Non-hazardous pest control

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Biocides; animal or insect repellents or attractants

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S084000, C424S405000, C424S410000, C514S546000, C514S717000, C514S718000, C514S720000, C514S729000, C514S730000, C514S739000

Reexamination Certificate

active

06183767

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of controlling pests and more particularly to a method of preparing and applying a pesticide which affects octopamine receptor sites in insects, arachnids and larvae.
Many chemicals and mixtures have been studied for pesticidal activity for many years with a goal of obtaining a product which is selective for invertebrates such as insects, arachnids and larvae thereof and has little or no toxicity to vertebrates such as mammals, fish, fowl and other species and does not otherwise persist in and damage the environment. Most products of which the applicants are aware and which have sufficient pesticidal activity to be of commercial significance, also have toxic or deleterious effects on mammals, fish, fowl or other species which are not the target of the product. For example, organophosphorus compounds and carbamates inhibit the activity of acetylcholinesterase in insects as well as in all classes of animals. Chlordimeform and related formamidines are known to act on octopamine receptors of insects but have been removed from the market because of cardiotoxic potential in vertebrates and carcinogenicity in animals and a varied effect on different insects. Also, very high doses are required to be toxic for certain insect species.
It is postulated that amidine compounds affect the octopamine sensitive adenylate cyclase present in insects [Nathanson et al,
Mol. Parmacol
20:68-75 (1981) and Nathanson,
Mol. Parmacol
28: 254-268 (1985)]. Another study was conducted on octopamine uptake and metabolism in the insect nervous system [Wierenga et al,
J Neurochem
54, 479-489 (1990)]. These studies were directed at nitrogen containing compounds which mimic the octopamine structure.
Insecticides such as trioxabicyclooctanes, dithianes, silatranes, lindane, toxaphen, cyclodienes and picrotoxin act on the GABA (gamma amino butyric acid) receptor. However, these products also affect mammals, birds, fish and other species.
There is a need for a pesticide which targets only insects, arachnids and their larvae and does not produce unwanted and harmful affects on other species.
BRIEF SUMMARY OF THE INVENTION
It is a primary object of the present invention to provide a method of preparing and applying a pesticide which kills invertebrates, especially insects, arachnids and their larvae and has no harmful effects on other species including mammals, fish and fowl.
It is a further object of the present invention to provide a method of preparing and applying a pesticide which exerts its pesticidal properties through the octopamine receptor site in insects, arachnids and their larvae and other invertebrates.
It is still another object of the present invention to provide a method of preparing and applying a pesticide at relatively low concentrations which will be effective over a comparatively long period of time such as at least 24 hours.
In accordance with the teachings of the present invention, there is disclosed a method of killing insects and arachnids and larvae thereof. The steps include preparing a mixture of a carrier with an affector agent which interferes with the neurotransmitters of the octopamine receptor site in insects, arachnids and their larvae and applying the mixture to insects, arachnids, larvae and their habitat. The affector agent interacts with octopamine receptor sites in the insects, arachnids and larvae and interferes with neurotransmission in the invertebrate but does not affect mammals, fish and fowl. The agent is a chemical having the structure of a six member carbon ring, the carbon ring having substituted thereon at least one oxygenated functional group.
There is further disclosed a method of killing insects and arachnids and larvae thereof. A blend of cinnamic alcohol, eugenol and alpha terpineol is prepared. The blend is mixed with a carrier to produce a uniform mixture. The mixture is applied to insects and arachnids and larvae and their habitat. The blend interacts with octopamine receptor sites in the invertebrate and interferes with neurotransmission in the invertebrate but does not affect mammals, fish and fowl.
In another aspect, there is disclosed a pesticide which has an affector agent having a six member carbon ring. The carbon ring has substituted thereon at least one oxygenated functional group. The affector agent affects the octopamine receptor site in invertebrates including insects, arachnids and their larvae. The affector agent is intimately mixed with a carrier. Exposure of insects, arachnids and their larvae to the affector agent produces a disruption of the octopamine receptor site in the invertebrates to interfere with neurotransmission in the invertebrate and the death of the exposed invertebrate.
Further disclosed is a method of killing insects, arachnids, and larvae. A mixture is prepared of a chemical derived from a plant essential oil with a carrier. The chemical has at least one oxygenated functional group therein. The chemical has octopamine receptor site inhibitory activity. The mixture is applied to insects, arachnids, larvae and their habitat. The chemical interacts with an octopamine receptor site in the insects, arachnids and larvae and interferes with neurotransmission in the insects, arachnids and larvae thereof but does not affect mammals, fish and fowl.
In another aspect there is disclosed a method of controlling insects, arachnids and their larvae. An emulsion is prepared of an affector agent which disrupts neurotransmission at the octopamine receptor site in insects, arachnids and their larvae. The mixture is applied to insects, arachnids, larvae and their habitat. The agent interacts with octopamine receptor sites in the insects, arachnids and larvae and deters the feeding of the insects, arachnids and larvae but does not affect mammals, fish and fowl.
In yet another aspect there is disclosed a method of controlling insects, arachnids and larvae. An affector agent mixed with a carrier is applied to larvae of the insects and arachnids and their habitat. The affector agent retards the growth of the larvae. The affector agent interacts with octopamine receptor sites in the larvae of the insects and arachnids and interferes with neurotransmission in the larvae but does not affect mammals, fish and fowl. The affector agent is a naturally occurring organic chemical having at least six (6) carbon atoms.
In addition, there is disclosed a method of killing insects, arachnids and larvae thereof. A mixture is prepared of a carrier and a naturally occurring organic chemical having at least six carbon atoms. The chemical has octopamine receptor site inhibitory activity. The mixture is applied to insects and arachnids and larvae thereof and their habitat. The chemical interacts with an octopamine receptor site in the insects and arachnids and larvae thereof and interferes with neurotransmission in the insects, arachnids and larvae thereof but does not affect mammals, fish and fowl.
These and other objects of the present invention will become apparent from a reading of the following specification, taken in conjunction with the enclosed drawings.


REFERENCES:
patent: 4186103 (1980-01-01), Hall et al.
patent: 4663315 (1987-05-01), Haregawa et al.
patent: 5118506 (1992-06-01), Eichoefer
patent: 5192545 (1993-03-01), Nakashima
patent: 5196200 (1993-03-01), Wilson
patent: 5439690 (1995-08-01), Knight
patent: 5474898 (1995-12-01), Venter et al.
patent: 5653991 (1997-08-01), Rod
patent: 5676958 (1997-10-01), Emerson
patent: 42 31 045 A 1 (1992-04-01), None
patent: WO 85/05038 (1972-09-01), None
patent: WO 93/00811 (1985-11-01), None
patent: WO91/17300 (1991-11-01), None
James A. Nathanson and Edward J. Hunnicutt, “N-Demethylchlordimeform a Potent Partial Agonist of Octopamine-Sensitive Adenylate Cyclase”; Molecular Pharmacology, 20:68-75; Feb. 5, 1981.
James A. Nathanson, “Phenyliminoimidazolidines Characterization of a Class of Potent Agonists of Octopamine-Sensitive Adenylate Cyclase and Their Use in Understanding the Pharmacology of Octopamine Receptors”; Mole

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-hazardous pest control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-hazardous pest control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-hazardous pest control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.