Non-covalent inhibitors of urokinase and blood vessel formation

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S018700, C530S331000

Reexamination Certificate

active

06586405

ABSTRACT:

FIELD OF THE INVENTION
Urokinase is an enzyme involved in the metastasis of tumor cells, neovascularization, and other activities. One purpose of the present invention is to provide novel compounds which are active as inhibitors of urokinase that can be used to inhibit the activity of urokinase and thereby attenuate its deleterious effects. Another purpose of the present invention is to provide novel compounds which inhibit blood vessel formation, particularly blood vessel formation related to a pathologic condition.
BACKGROUND AND INTRODUCTION TO THE INVENTION
Urinary-type plasminogen activator (uPA; urokinase) is a serine protease within the trypsin/chymotrypsin family. In its physiological state, uPA is found in three forms: single chain pro-uPA, two chain uPA, and low molecular weight uPA (lacks N-terminal domains). The zymogen, pro-uPA, is converted to u-PA by cleavage of the peptide bond at K158-I159. The resultant two chain uPA is linked by disulfide bridges, has an M
r
of about 50 kD, and a C-terminal serine proteinase domain.
The activity of uPA is focused to cell surfaces upon binding to its receptor, uPAR. uPAR is a single-chain glycosyl phosphatidyl inositol (GPI)-anchored membrane receptor. The N-terminal 92 amino acids of uPAR play a dominant role in binding to uPA and pro-uPA. Receptor for uPA has been located on T-cells, NK cells, monocytes, and neutrophils, as well as vascular endothelial cells, fibroblasts, smooth muscle cells, keratinocytes, placental trophoblasts, hepatocytes, and a wide variety of tumor cells.
After conversion of pro-uPA to uPA, which occurs primarily at the uPAR on the cell surface, uPA activates plasminogen to plasmin. Activation occurs upon cleavage at residues PGR-VV for human plasminogen, or at residues SGR-IV for bovine plasminogen. Because plasminogen also is present on the cell surface, this activation cascade focuses the activity of u-PA and plasmin on the plasma membrane. Plasmin has many roles, including activation of additional uPA and other enzymes, digestion of fibrin, and digestion of components of the extracellular matrix (ECM). Digestion of the ECM surrounding a tumor removes the ECM as a physical barrier to metastasizing cells, which are then free to leave primary tumors and invade secondary sites. A review of the role of the uPA/uPAR system in cancer metastasis is provided in “The Urokinase-type Plasminogen Activator System in Cancer Metastasis: A Review”, Andreasen et al., Int. J. Canc. 72:1-22 (1997).
A correlation between a high level of uPA and a high rate of metastasis, and poor prognosis, has been noted in certain tumors, especially breast cancer [Quax et al., J. Cell Biol. 115:191-199 (1991); Duffy et al., Cancer Res. 50:6827-6829 (1990)]. For instance, tumors of the lung [Oka et al., Cancer Res. 51:3522-3525 (1991)], bladder [Hasui et al., Int. J. Cancer 50:871-873 (1992)], stomach [Nekarda et al., Lancet 343:117 (1994)], cervical cancer [Kobayashi et al., Cancer Res. 54:6539-6548 (1994)], ovary [Kuhn et al., Gynecol. Oncol. 55:401-409 (1994)], kidney [Hofmann et al., Cancer 78:487-492 (1996)], brain [Bindahl et al., J. Neuro-Oncol. 22:101-110 (1994)], and soft tissue sarcoma [Choong et al., Int. J. Cancer (Pred. Oncol.) 69:268-272 (1996)] have exhibited a high level of uPA and/or uPA activity and a high rate of metastases. Overproduction of uPA has been reported to result in increased skeletal metastasis by prostate cancer cells in vivo [Achbarou et al., Cancer Res. 54:2372-2377 (1994)].
Inhibition or lowering of uPA activity, or disruption/inhibition of the interaction between uPA and its receptor (uPAR) has been shown to have a positive effect on maintenance of the extracellular matrix and an inhibitory effect on metastasis [Ossowski and Reich, Cell 35:611-619 (1983); Ossowski, Cell 52:321-328 (1988); Ossowski, J. Cell Biol. 107:2437-2445 (1988); Wilhelm et al., Clin. Exp. Metastasis 13:296-302 (1995); Achbarou et al., Cancer Res. 54:2372-2377 (1994); Crowley et al., Proc. Natl. Acad. Sci. USA 90:5021-5025 (1993); Kook et al., EMBO J. 13:3983-3991 (1994)]. The results of such experimental studies suggest that uPA-catalyzed plasminogen activation is rate-limiting for tumor progression, local tumor invasion and/or formation of distant metastasis. [Andreasen et al., Int. J. Canc. 72:1-22 (1997)].
The effects of the uPA system on cell migration and invasion are thought to be due to both a proteolytic effect of plasmin-mediated degradation of the extracellular matrix, as well as more a direct interaction of the uPA receptor with components of the extracellular matrix. Degradation of the extracellular matrix permits a metastasizing cell to invade the matrix, whereas interaction between uPA receptor and the matrix itself assists a cell in its migration. Localization of the uPA/plasmin system on the cell surface, or the leading edge of metastasizing cells, is consistent with postulated role of uPA in metastasis [Plesner et al., Stem Cells 15:398-408 (1997)].
Interaction of uPAR with vitronectin, a component of the extracellular matrix, mediates cell adhesion and can be enhanced when uPAR is bound by uPA. Cell surface adhesion molecules, integrins, also appear to be involved in this adhesion function, particularly beta-1 and beta-2 integrins [Paysant et al., Br. J. Haematol. 100:45-51 (1998); Simon et al., Blood 88:3185-3194 (1996)]. The CD11b/CD18 integrin can associate with the uPA-uPAR complex and promote adhesion of cells bearing these receptors, e.g., neutrophils, leukocytes.
The uPA/uPAR system also is involved in the establishment of new vasculature, or neovascularization.
Establishment of new vasculature is required for sustaining primary and metastatic tumor growth. Pathological neovascularization also is a characteristic of retinal disease, rubeosis iritis, proliferative vitreo retinopathy inflammatory disease, diabetic retinopathy, chronic uveitis, Fuch's heterochromic iridocyclitis, neovascular glaucoma, corneal or optic nerve neovascularization, vascular disease, pterygium, glaucoma surgery bleb failure, hyperkeratosis, cheloid and polyp formation (see EP 451,130). Undesired angiogenesis also can occur in the following conditions or can be a result of the following activities: macular degeneration, retinopathy of prematurity, corneal graft rejection, retrolental fibroplasia, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sogrens disease, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections other than leprosy, lipid degeneration, chemical burns, bacterial or fungal ulcers, Herpes simplex or zoster infections, protozoan infections, Kaposi's sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, trauma, rheumatoid arthritis, systemic lupus, polyarteritis, Wegeners sarcoidosis, sleritis, Steven's Johnson disease, radial keratotomy, sickle cell anemia, sarcoid, pseudoxanthoma elasticum, Pagets disease, vein or artery occlusion, carotid obstructive disease, chronic uveitis, chronic vitritis, Lyme's disease, Eales disease, Bechets disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, post-laser complications, abnormal proliferation of fibrovascular tissue, hemangiomas, Osler-Wever-Rendu, solid tumors, blood borne tumors, AIDS, ocular neovascular disease, osteoarthritis, chronic inflammation, Crohn's disease, ulcerative colitis, tumors of rhabdomyosarcoma, tumors of retinoblastoma, tumors of Ewing sarcoma, tumors of neuroblastoma, tumors of osteosarcoma, leukemia, psoriasis, atherosclerosis, pemphigoid, as recited in U.S. Pat. No. 5,712,291.
An antagonist of uPA/uPAR binding (EGF-like domain of uPA fused to Fc of IgG) was said to inhibit neovascularization and growth of the murine B16 melanoma. [Min et al., Cancer Res. 56:2428-243

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-covalent inhibitors of urokinase and blood vessel formation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-covalent inhibitors of urokinase and blood vessel formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-covalent inhibitors of urokinase and blood vessel formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3094121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.