Non-contact extrusion nozzle head for applying sealant...

Plastic article or earthenware shaping or treating: apparatus – Means providing a shaping orifice

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S113000, C156S500000

Reexamination Certificate

active

06688874

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a non-contact extrusion nozzle head that applies a sealant material evenly around the perimeter of an insulated glass assembly consisting of two panes of glass separated by a spacer. More particularly, the nozzle head is used as a guide for applying the sealant material between the two layers of glass panes to provide a smooth finished surface of sealant material.
BACKGROUND OF THE INVENTION
Several types of dispensing nozzles for applying sealant material between two layers of glass panes have been utilized in the past. Generally, these standard types of dispensing nozzles have a sealant extruder system with a heating element thereon which applies the sealant material into a channel between the two layers of glass sheets. The sealant material is forced through the nozzle head by a pressure-applying member from a sealant material supply.
The manufacturing of an insulated glass frame includes the assembly of two sheets or panels of glass separated by one or more spacers so that there is a layer of insulating air between the two panels of glass. To seal in the insulating layer of air, a sealant material must be applied to each edge of the glass panels in the space formed between the spacer and the edges of the glass panels. In order to form a good seal, the two glass panels must be accurately aligned relative to each other, and, in addition, the spacer along each edge of the glass assembly must be properly spaced and aligned relative to the two glass panels. As a still further condition for forming a good seal, the glass assembly and spacers must be maintained in proper alignment while the sealant material is being applied thereto. Finally, the sealant material must be applied in such a way that it is uniform and covers the entire edge of the glass assembly.
The application of adhesive or other sealant material to substrates is well known and is particularly well known in the production of an insulated glass assembly. In the manufacturing of insulated glass, it is important to insure that the perimeter of a unit is completely sealed. If this is not done, the result is the ingress of moisture or debris which eventually leads to the premature degradation of an insulated glass assembly.
In view of this difficulty, the prior art has proposed various nozzles and applying apparatus to insure uniform application of sealant material in the glass assemblies. Typical of the known nozzle arrangements are extrusion heads which are either automated or manual. One of the primary difficulties of the known arrangements is that the sealant material is not uniformly applied in width or depth about the entire perimeter. Further, these known arrangements are limited in that they do not positively avoid entrapment of air within the sealant material. A further limitation is that the outer surface of the sealant material is not smooth and perfectly perpendicular relative to the substrate surface. The result of this is surface irregularity about the perimeter as opposed to a smooth planar finish which is more desirable from an aesthetic point of view as well as a structural point of view.
Although nozzle designs and applying apparatus have been developed in the past for handling insulated glass assemblies and applying sealant material to the edges, such apparatus has not been totally satisfactory. In one prior art system, a stationary header applies the sealant material to the glass assembly as it moves along a work support. However, one of the problems of such an arrangement is that it is difficult to keep the glass assembly and spacers properly aligned, relative to each other, as it moves relative to the stationary header. As a result, defects in the seal are likely to occur.
In another prior art arrangement, the sealant material is applied to a frame formed by aluminum spacers, and then the spacer frame with the sealant material applied thereto is taken to another station where the glass panels are adhered to the spacer frame. The glass assembly is then transferred to a vertically arranged heating and compression station to heat and compress the assembly. As will be understood, such an arrangement is time consuming, expensive, requires many work stations and is not automatic. Accordingly, this system has also not been entirely satisfactory.
Other problems of prior art sealant applying apparatus is that they have elaborate and expensive motion systems for changing the alignment of the dispensing nozzle head when applying sealant material to different sizes (or width) of air spaces between two glass panes.
Still other problems of present sealant applying apparatus is the use of complex, elaborate and expensive space feedback sensors or space feedback mechanisms for allowing differences between the sealant space caused by improper positioning of the spacer component between the two layers of glass panes of the insulated glass assembly.
Further problems occur with frequent wearing out of the dispensing nozzle heads presently used in the aforementioned prior art sealant applying apparatus. As these dispensing nozzle heads are in contact with the glass panes, they are quickly abraded by the glass pane units, such that the nozzle heads must be changed on a weekly basis. This decreases the production of insulated glass assemblies being manufactured.
In view of the existing limitations in the sealant applying art, there exists a need for an improved nozzle for applying sealant between insulated glass panels to produce a properly sealed insulated glass assembly.
DESCRIPTION OF THE PRIOR ART
Dispensing nozzles for sealant materials of various designs, configurations, styles and materials of construction have been disclosed in the prior art. For example, U.S. Pat. No. 3,852,149 to SITTER et al discloses an apparatus for manufacturing sealed glass window assemblies having a sealant extruder with a heating element thereon which applies sealant material into the channel. The sealant material is forced through a nozzle head via a screw member wherein the nozzle head has two oppositely inclined openings which serve to direct the heated sealant material into the corners of the channel between the two layers of glass sheets. This prior art patent does not disclose or teach the particular structure, design, configuration or function of the present invention of a non-contact extrusion nozzle head for applying sealant material in an insulated glass assembly.
U.S. Pat. Nos. 3,876,489 and 4,120,999 to CHENEL disclose an apparatus for the manufacture of multi-pane windows having an extrusion assembly. The extrusion assembly (or extrusion station) includes a plurality of sealant containers, extruders and a nozzle head. These prior art patents do not disclose or teach the particular structure, design, configuration or function of the present invention of a non-contact extrusion nozzle head for applying sealant material in an insulated glass assembly.
U.S. Pat. Nos. 4,088,522 and 4,145,237 to MERCIER et al disclose an apparatus for simultaneously sealing two edges of a multiple pane window by applying sealant material via nozzle heads. The nozzle heads are of a simple design and each has an extrusion nozzle member, respectively, for applying sealant material between two glass panes for forming a seal. These prior art patents do not disclose or teach the particular structure, design, configuration or function of the present invention of a non-contact extrusion nozzle head for applying sealant material in an insulated glass assembly.
U.S. Pat. No. 5,268,049 to MARRIOTT discloses a method of laminating glass sheets together using a nozzle and sleeve assembly of a simple design in order to introduce a measured volume of a liquid laminating resin between the glass sheets so that the resin contacts the inner surfaces of glass sheets, respectively. This prior art patent does not disclose or teach the particular structure, design, configuration or function of the present invention of a non-contact extrusion nozzle head for applying sealant material in an insulated glass assembly.
None o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-contact extrusion nozzle head for applying sealant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-contact extrusion nozzle head for applying sealant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-contact extrusion nozzle head for applying sealant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347387

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.