Non-chemical water treatment method and apparatus employing...

Liquid purification or separation – Processes – Utilizing electrical or wave energy directly applied to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S764000, C210S192000, C210S206000, C210S243000, C422S186040, C422S186300, C422S029000, C204S157460, C204S157500, C204S242000

Reexamination Certificate

active

06740245

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a system and methods for the efficient generation of ionized gas (vapor) atoms and molecules for water and/or wastewater disinfection, and more generally, to methods and apparatus for non-chemical methods of water treatment, that is, avoiding use of conventional chemical reagents and processes, such as treatments involving one or more of polymers, coagulants, sterilizers, and disinfectants. The invention provides non-chemical methods of water disinfection, coagulation, solids removal, decontamination, and highly efficient and economical purification.
APPLICATION OF AND BENEFITS PROVIDED BY THE INVENTION
Worldwide demand for water purification and contamination control has continued to grow along with the economic and environmental emphasis on water conservation. According to one aspect of the invention, various combinations of interchangeable process flow schemes that provide high efficiency modular purification and contamination control technology can be selected and optimized for the particular use involved. Such uses include, but are not limited to: non-chemical treatment of: commercial and industrial cooling water for bacterial elimination; treatment of hazardous and/or toxic industrial effluents; purification of wastewater for recycle or reuse; de-toxification and reuse of food processing water; life extension and reuse of machine tool coolants; laundry wastewater purification for reduction of sewer discharge; decontamination of marine ballast and bilge water; recycle and/or reuse of animal production water; and purification of sewage treatment and/or drinking water. The scope of the invention and its applications are literally global. The invention can be utilized for the non-chemical treatment, recovery, and recycling of water and wastewater, including the removal of solids and bacterial agents and microscopic contaminants. Further, the invention can be applied to provide zero discharge of chemically treated wastewater to the surrounding environment, and removes the vast majority of associated corrosion and maintenance problems from the water treatment operations.
BACKGROUND OF THE INVENTION
The methods of water disinfection most frequently used, and the art of water treatment in general, is most often represented by various hydro-separators, clarifiers, mechanical filters, and/or chemically oriented apparatus and flocculation/coagulation procedures (including chemical post-treatment) whereby impurities are removed from water. The basic types of known water treatment purification arrangements and their accompanying problems and limitations may be categorized generally as follows:
1. Non-regeneratable modular filters are one time use, short-term devices of inexpensive cartridge design that have restrictive low-flow and high head-loss pressure limitations. Typical filter materials are packed cellulose or fibrous/filament textiles that, at best, provide (at optimal flow) no better than a continuous 5-10 micron absolute particle size separation or filtration. Minor recognizable suspended solids in the water influent flow will quickly clog the filter media material within the cartridge and render the filter system involved inoperable. Where moderate and high flow rates are involved, replacement costs and down time are inordinately costly and burdensome. These canister/cartridge filters and separation units are usually non-compatible and fairly short-lived if exposed to oxidizing and corrosive chemical treatment agents within the contaminated water to be purified.
2. Chemical treatment methods typically include use of oxidizers, polymers, flocculants, and/or coagulants, and may also include use of chlorine for disinfection and sterilization. These methods are cost prohibitive and labor-intensive and can require high maintenance, as they can damage the associated waste treatment equipment component(s) system. Further, various chemical treatments involve health and safety risks leading to restrictions on their use and reduction of permitted exposure. Commonly, chemical process treatment methods lead to the generation of voluminous amounts of toxic chemical solids and sludges along with the associated environmental exposure liability problems; further, these methods may involve liability issues and regulatory agency controls due to the necessity of disposal of these hazardous substances.
3. Ozone generators, e.g., as conventionally offered as “Corona-Arc Generation” disinfection and treatment systems provide a high voltage electric arc or corona. These open spark discharges are conducive to potentially dangerous situations. Moreover, these systems require fairly high power and have relatively high maintenance requirements, and are expensive to operate in that they require a supply of low-humidity air (leading to continuous desiccator and dryer maintenance requirements) and further require high maintenance air-separation oxygen concentrator equipment. Problems due to potentially toxic exposure to ozone can also exist.
4. Reverse osmosis (R. O.) treatment systems, involving membrane separation of sub-micron particles from water, often present problems associated with shortened membrane life due to plugging, limited process flow capacity, and disinfection of the membrane so as to be free from contaminating biological agents and/or oily materials. The R.O. membrane is highly susceptible to fouling with biological growth; further, R.O. treatment systems are costly both as to initial cost and in operation, as they require substantial electrical power to provide the high pressure needed for operation, and due to their high maintenance requirements.
5. Traditional filtration systems employ one or more of carbon, anthracite, coal, paper, fibrous materials, “mixed media”, and/or sand as a physical removal method, that is, to establish a solids separation and filtration process. These systems often involve operational problems such as early fouling of the filtration media, which often requires very frequent filter back-washing and adds difficulties relative to the disposal of large quantities of the backwashed materials. The back-wash water may be very biologically active and alsol require disinfection, due to “bleed through” bacterial recontamination of the water being treated. Quite often, in order to maintain a steady-state level of solids removal and continuous purification efficiencies, the entire volume of filtration materials must be removed and replaced several times per year due to encrustment and contamination.
6. Ion exchange filters basically remove only dissolved ions and electrically charged colloidal solids; they rapidly plug in the presence of suspended solids. Even a moderate flow (50-100 GPM) ion exchange filter system represents a complex plumbing network involving unwieldy resin filter and/or “zeolite staged” containers and requires large regenerative acid and base tankage. Regeneration of the filter resin is complicated and is often incomplete due to the plugging of the resin pore spaces by the larger particle size suspended solids that gain entry into the flow. These systems have substantial flow rate restrictions limiting their practicality for larger commercial or general-purpose use. Thus, ion exchange filtration is suitable only for very select water treatment or specific wastewaters and also often involves high capital equipment purchase cost in addition to high repetitive media replacement and operational costs.
INVENTOR'S PRIOR ART
As explained in further detail below, the present invention encompasses multiple technological advancements, refinements, and/or alterations of the basic principles of applied water treatment as represented in one or more of the following U.S. Patents, as to each of which the present inventor is sole or joint inventor, and which are incorporated by reference herein.
Title. SYSTEM AND REACTOR FOR MIXING COAGULATING AGENTS INTO CONTAMINATED WATER FLOW, AND FOR REMOVING CONTAMINANTS THEREFROM
U.S. Pat. No. 5,443,719 Issued: Aug. 22, 1995
Title: METHOD AND APPARATUS FOR WATER TREATME

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-chemical water treatment method and apparatus employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-chemical water treatment method and apparatus employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-chemical water treatment method and apparatus employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258467

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.