Non-caustic cleaning composition comprising peroxygen...

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S197000, C510S220000, C510S232000, C510S233000, C510S231000, C510S362000, C510S372000, C510S375000, C510S378000, C510S436000, C510S509000, C510S510000, C510S511000, C510S512000, C510S480000, C510S452000, C510S453000, C510S367000, C510S531000, C510S534000

Reexamination Certificate

active

06194367

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a cleaning composition and more specifically to an alkaline cleaning composition for removing protein, grease and other organic deposits and stains from articles such as those used in the food industry.
BACKGROUND OF THE INVENTION
In the food processing industry, the cleaning of equipment is a significant problem. In many applications, the high temperatures employed cause difficult-to-remove organic deposits, such as baked-on carbon and hydrolyzed protein, to form on the equipment. In the dairy industry, for example, the pasteurizing equipment is heated to temperatures in excess of 160° F. to sterilize dairy products. At such temperatures, a blue-black organic deposit, that is very difficult to remove with known cleaners, commonly forms on the equipment.
Caustic cleaners are commonly used to remove organic deposits but caustic cleaners are unsafe and require substantially elevated temperatures to work effectively and are extremely difficult to remove by rinsing. Many caustic cleaners, such as those incorporating sodium hydroxide, are corrosive to skin and produce hazardous fumes. Such caustic cleaners can also corrode or scar metal (e.g., aluminum and brass), and destroy many types of floor, wall and countertop surfaces. For instance, sodium hydroxide should not be used on aluminum since reactions will occur which are corrosive to the metal. At temperatures in excess of 160° F., which are normally required to remove organic deposits, caustic cleaners can consume oxygen. In tanks and other types of substantially closed vessels, the consumption of oxygen can cause a decrease in the internal pressure of the vessel leading to vessel collapse. To remove the caustic cleaners, an elaborate set of steps is followed, typically requiring high temperatures and neutralization.
To avoid the problems associated with caustic cleaners noncaustic cleaners, which are typically not as effective as caustic cleaners, are employed in many applications. Because of the reduced effectiveness of the noncaustic cleaners, additional time and labor is required to remove stubborn organic deposits. Noncaustic cleaners are sometimes initially used to remove a portion of the organic deposits with the remainder being removed by caustic cleaners. In this manner, the use of caustic cleaners is reduced as much as possible.
There is a need for a non-hazardous cleaner for removing organic deposits, such as those encountered in the food industry, that is safe to use and will not damage the surfaces to be cleaned. Particularly, there is a need to provide a cleaner that is noncorrosive to skin and the surfaces to be cleaned and that will not consume oxygen at high temperatures.
There is a further need to provide a cleaner that is capable of removing organic deposits at relatively low temperatures.
There is a further need for an all purpose cleaner having a wide range of applications, including the removal of organic deposits from deep fat fryers or bakery pans, to replace caustic and noncaustic cleaners.
SUMMARY OF THE INVENTION
The present invention addresses these and other needs by providing a cleaning composition which includes at least a peroxygen compound, a metasilicate or sesquisilicate, and a chelate. The cleaning composition is typically in a dry or granulated state and can be combined with a suitable carrier, typically water, to form a cleaning solution.
The peroxygen compound is preferably a perborate or a percarbonate and more preferably a percarbonate. The perborate or percarbonate preferably is complexed with a metal such as sodium, lithium, calcium, potassium or boron. The preferred amount of the peroxygen compound in the cleaning composition, when in the dry or granular state, is at least about 25% by weight and more preferably ranges from about 25% to about 40% by weight of the cleaning composition.
The metasilicate and sesquisilicate are preferably anhydrous. The preferred amount of the metasilicate and/or sesquisilicate in the cleaning composition, when in the dry or granular state, is at least about 15% by weight and more preferably ranges from about 15% to about 40% by weight of the cleaning composition.
The chelate is preferably a derivative of a carboxylic or phosphoric acid. More preferably, the chelate is selected from the group consisting of ethylenediaminetetraacetic acid (“EDTA”), N-hydroxyethylenediaminetriacetic acid (“NTA”), and poly(alkylphosphonic acid). The preferred amount of the chelate in the cleaning composition, when in the dry or granular state, is at least about 2% by weight and more preferably ranges from about 2% to about 8% by weight of the cleaning composition.
In one embodiment, the peroxygen compound, metasilicate and chelate are all salts having the same cation. The preferred cation is sodium or potassium.
The composition can include a builder. The builder is preferably a carbonate, sulfate, phosphate, or mixture thereof. The carbonate is preferably at least one of the following compounds: a sodium carbonate (e.g., soda ash), sodium sesquicarbonate, or sodium bicarbonate. The sulfate is preferably sodium sulfate. The phosphate is preferably at least one of the following compounds: a tripolyphosphate, trisodium polyphosphate, sodium potassium pyrophosphate, sodium hexametaphosphate, disodium phosphate, monosodium phosphate. The carbonate and phosphate are preferably in the hydrated form. The preferred amount of the builder in the cleaning composition, when in the dry or granular state, is from about 15% to about 75% by weight of the cleaning composition.
The ratios of the various components are important in many applications. The preferred weight ratio of the peroxygen compound to the chelate ranges from about 7:1 to 3:1. The preferred weight ratio of the metasilicate and sesquisilicate to the surfactant ranges from about 5:1 to about 15:1.
The cleaning composition can include a surfactant to act as a wetting agent, emulsifying agent, and/or dispersing agent. The preferred amount of the surfactant in the cleaning composition, when in the dry or granular state, ranges from about 2.5% to about 5% by weight of the cleaning composition.
The cleaning composition can include a gelling agent for adhering the cleaning composition to a desired surface. Preferred gelling agents include carboxymethylcellulose, hydroxymethylcellulose and modified polyacrylamide. The preferred amount of the gelling agents in the cleaning composition, when in the dry or granular state, ranges from about 5% to about 10% by weight of the cleaning composition.
As noted above, the cleaning composition can be combined with water to form a cleaning solution. The cleaning solution preferably contains from about 92% to about 99% water by weight with the remainder constituting the cleaning composition. The pH of the cleaning solution preferably ranges from about pH 9 to about pH 12.
In another embodiment of the subject invention, the cleaning composition includes (a) a peroxygen compound; (b) at least about 15% by weight of a metasilicate and/or sesquisilicate; and (c) a chelate that is at least one of a carboxylic acid, phosphoric acid and salt thereof. The peroxygen compound, metasilicate and chelate can be salts having the same cation. The cleaning composition can further include a surfactant and a builder as described above. In yet another embodiment of the present invention, a method for cleaning an object is provided including the steps of: (i) applying a cleaning solution to the object wherein the cleaning solution includes (a) at least about 25% by weight of a percarbonate compound; (b) at least one of a metasilicate and sesquisilicate; (c) a builder including at least one of the following: a sulfate, phosphate, and a carbonate; and (d) a chelate; and (ii) removing the cleaning solution from the object. The object can be composed of a broad variety of materials, including a metal, such as brass, stainless steel, aluminum, or a ceramic or plastic material.
The method can further include one or more of the following steps: (i) soaking the object

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-caustic cleaning composition comprising peroxygen... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-caustic cleaning composition comprising peroxygen..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-caustic cleaning composition comprising peroxygen... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2600969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.