Non-aqueous detergent compositions containing bleach

Special receptacle or package – With specified material for container or content – For content inhibitor or stabilizer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S376000

Reexamination Certificate

active

06497322

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to non-aqueous detergent compositions containing a bleach source.
BACKGROUND OF THE INVENTION
Detergent products in the form of liquid are often considered to be more convenient to use than are dry powdered or particulate detergent products. Said detergents have therefore found substantial favor with consumers. Such detergent products are readily measurable, speedily dissolved in the wash water, capable of being easily applied in concentrated solutions or dispersions to soiled areas on garments to be laundered and are non-dusting. They also usually occupy less storage space than granular products. Additionally, such detergents may have incorporated in their formulations materials which could not withstand drying operations without deterioration, which operations are often employed in the manufacture of particulate or granular detergent products.
Although said detergents have a number of advantages over granular detergent products, they also inherently possess several disadvantages. In particular, detergent composition components which may be compatible with each other in granular products may tend to interact or react with each other. Thus such components as enzymes, surfactants, perfumes, brighteners, solvents and especially bleaches and bleach activators can be especially difficult to incorporate into liquid detergent products which have an acceptable degree of chemical stability.
One approach for enhancing the chemical compatibility of detergent composition components in detergent products has been to formulate non-aqueous (or anhydrous) detergent compositions. In such non-aqueous products, at least some of the normally solid detergent composition components tend to remain insoluble in the liquid product and hence are less reactive with each other than if they had been dissolved in the liquid matrix. Non-aqueous liquid detergent compositions, including those which contain reactive materials such as peroxygen bleaching agents, have been disclosed for example, in Hepworth et al., U.S. Pat. No. 4,615,820, Issued Oct. 17, 1986; Schultz et al., U.S. Pat. No. 4,929,380, Issued May 29, 1990; Schultz et al., U.S. Pat. No. 5,008,031, Issued Apr. 16, 1991; Elder et al., EP-A-030,096, Published Jun. 10, 1981; Hall et al., WO 92109678, Published Jun. 11, 1992 and Sanderson et al., EP-A-565,017, Published Oct. 13, 1993.
A particular problem that has been observed with the incorporation of bleach precursors in non-aqueous detergents, includes the chemical stability of the bleach and bleach precursor. Bleach and bleach precursors should remain chemically stable in the concentrate, while rapidly reacting with each other upon dilution in the wash liquor. Unfortunately, the bleach and/or bleach precursor present in the concentrate show some degree of decomposition. This is usually accompanied by the evolution of oxygen, thereby creating internal pressure in the container which builds up with time.
Especially in the cases of plastic containers, the containers are progressively subjected to deformation due to the internal pressure build-up. This phenomenon is often referred to as “bulging”. This phenomenon is especially acute in warm countries where the containers may be exposed to particularly elevated temperatures. In some instances, bulging can be so severe so as to induce a base deformation which is such that the container can no longer stay in upright position. For instance, in supermarkets, the containers may fall of the shelves.
The problem of bulging can to some extent be addressed by venting systems. However, venting systems are expensive to incorporate into the package design, and tend to fail when they are in contact with the liquid product (e.g., bottles lying or upside-down), or cause leakage of the product. Therefore, there is a continuing need to reduce the amount of packaging bulging for non-aqueous, bleach containing liquid detergents.
It has now been found that the bulging can be reduced by specific compounds which are capable of interacting with the oxygen evolving from the non-aqueous liquid detergents.
SUMMARY OF THE INVENTION
According to the present invention, non-aqueous liquid detergent compositions are provided, containing specific compounds capable of interacting with oxygen.
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention it has been found that the problem of package bulging is reduced by adding specific compounds into the non-aqueous liquid detergent compositions which serve to interact with the oxygen released by the decomposition of the bleaching source. By interacting is meant that these compounds either react or that the oxygen is adsorbed by this compound.
As a consequence, these specific compounds are effective to reduce or eliminate oxygen which would build-up in the package.
Preferred compounds that are able to react with the oxygen are oxygen scavengers. Preferred oxygen scavengers are compounds that contain a metal ion. Examples are iron, cobalt and manganese. According to a preferred embodiment, the compound is a catalyst containing the metal-ion.
Preferred catalysts are bleach catalysts which are transition metal complexes of a macropolycyclic rigid ligand. The phrase “macropolycyclic rigid ligand” is sometimes abbreviated as “MRL” in discussion below. The amount used is a catalytically effective amount, suitably about 1 ppb or more, for example up to about 99.9%, more typically about 0.001 ppm or more, preferably from about 0.05 ppm to about 500 ppm (wherein “ppb” denotes parts per billion by weight and “ppm” denotes parts per million by weight).
Suitable transition metals e.g., Mn are illustrated hereinafter. “Macropolycyclic” means a MRL is both a macrocycle and is polycyclic. “Polycyclic” means at least bicyclic. The term “rigid” as used herein herein includes “having a superstructure” and “cross-bridged”. “Rigid” has been defined as the constrained converse of flexibility: see D. H. Busch.,
Chemical Reviews
., (1993), 93, 847-860, incorporated by reference. More particularly, “rigid” as used herein means that the MRL must be determinably more rigid than a macrocycle (“parent macrocycle”) which is otherwise identical (having the same ring size and type and number of atoms in the main ring) but lacking a superstructure (especially linking moieties or, preferably cross-bridging moieties) found in the MRL's. In determining the comparative rigidity of macrocycles with and without superstructures, the practitioner will use the free form (not the metal-bound form) of the macrocycles. Rigidity is well-known to be useful in comparing macrocycles; suitable tools for determining, measuring or comparing rigidity include computational methods (see, for example, Zimmer,
Chemical Reviews
, (1995), 95(38), 2629-2648 or Hancock et al.,
Inorganica Chimica Acta
, (1989), 164, 73-84. A determination of whether one macrocycle is more rigid than another can be often made by simply making a molecular model, thus it is not in general essential to know configurational energies in absolute terms or to precisely compute them. Excellent comparative determinations of rigidity of one macrocycle vs. another can be made using inexpensive personal computer-based computational tools, such as ALCHEMY III, commercially available from Tripos Associates. Tripos also has available more expensive software permitting not only comparative, but absolute determinations; alternately, SHAPES can be used (see Zimmer cited supra). One observation which is significant in the context of the present invention is that there is an optimum for the present purposes when the parent macrocycle is distinctly flexible as compared to the cross-bridged form. Thus, unexpectedly, it is preferred to use parent macrocycles containing at least four donor atoms, such as cyclam derivatives, and to cross-bridge them, rather than to start with a more rigid parent macrocycle. Another observation is that cross-bridged macrocycles are significantly preferred over macrocycles which are bridged in other manners.
Preferred MRL's her

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-aqueous detergent compositions containing bleach does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-aqueous detergent compositions containing bleach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-aqueous detergent compositions containing bleach will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925372

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.