Non-aqueous coating composition based on an oxidatively...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C522S018000, C522S020000, C522S059000, C522S064000, C522S104000, C522S105000, C522S108000, C522S179000, C522S181000, C522S172000, C526S323000, C526S323100, C526S323200, C528S026500, C528S245500, C528S295500

Reexamination Certificate

active

06548565

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention pertains to a non-aqueous coating composition based on an oxidatively drying alkyd resin and a photo-initiator.
Such a coating composition has been proposed before in EP-A-234 641. The composition described in the document comprises an oxidatively drying alkyd resin of comparatively low-molecular weight and an allyl ether group covalently bonded thereto, a siccative such as a cobalt salt and/or zirconium salt and, optionally, a photo-initiator.
A drawback to the coating compositions described in the document is that curing at temperatures of 10° C. or lower, in particular of thick coats, is not satisfactory. A further drawback to the known coating compositions is that on curing acrolein is released.
SUMMARY OF THE INVENTION
The invention now provides a coating composition which can be cured without any problems also at low temperatures even after it has been applied as a somewhat thicker coat.
The invention incorporates an acid or latent acid and one or more compounds belonging to the group of vinyl ethers, acetals, and alkoxysilanes which are reactive in the presence of an acid into a coating composition of the known type mentioned in the opening paragraph.
It should be noted that EP-A-234 641 mentions in passing the possibility to modify the employed alkyd resins with compounds preferably having at least two reactive groups, such as polyisocyanates or polyalkoxysilanes. However, the reactivity of these groups is intended for their reaction with the functional groups present in the alkyd resin during the preparation of the resin.
DETAILED DESCRIPTION OF THE INVENTION
At least part of the alkyd resin composition optionally comprising several alkyd resins in the non-aqueous coating compositions according to the invention is oxidatively drying as a result of incorporating a large number of unsaturated, aliphatic compounds, at least a portion of which is poly-unsaturated. The unsaturated aliphatic compounds preferably are unsaturated aliphatic monocarboxylic acids, more particularly poly-unsaturated aliphatic monocarboxylic acids. Examples of mono-unsaturated fatty acids are myristoleic acid, palmitoleic acid, oleic acid, gadoleic acid, erucic acid, and ricinoleic acid. Preferably use is made of fatty acids containing conjugated double bonds, such as dehydrated ricinus oil fatty acid and/or wood oil fatty acid. Other monocarboxylic acids suitable for use include tetrahydrobenzoic acid and hydrogenated or non-hydrogenated abietic acid or its isomer. If so desired, the monocarboxylic acids in question may be used wholly or in part as triglyceride, e.g., as vegetable oil, in the preparation of the alkyd resin. If so desired, mixtures of two or more of such monocarboxylic acids or triglycerides may be employed, optionally in the presence of one or more saturated, (cyclo)aliphatic or aromatic monocarboxylic acids, e.g., pivalic acid, 2-ethylhexanoic acid, lauric acid, palmitic acid, stearic acid, 4-tert.butyl-benzoic acid, cyclopentane carboxylic acid, naphthenic acid, cyclohexane carboxylic acid, 2,4-dimethyl benzoic acid, 2-methyl benzoic acid, and benzoic acid.
If so desired, also polycarboxylic acids may be incorporated into the alkyd resin, such as phthalic acid, isophthalic acid, terephthalic acid, 5-tert.butyl isophthalic acid, trimellitic acid, pyromellitic acid, succinic acid, adipic acid, 2,2,4-trimethyl adipic acid, azelaic acid, sebacic acid, dimerised fatty acids, cyclopentane-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, 4-methylcyclohexane-1,2-dicarboxylic acid, tetrahydrophthalic acid, endomethylene-cyclohexane-1,2-dicarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, endoisopropylidene-cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. If so desired, the carboxylic acids in question may be used as anhydrides or in the form of an ester, e.g., an ester of an alcohol having 1-4 carbon atoms.
In addition, the alkyd resin can be composed of di- or polyvalent hydroxyl compounds. Examples of suitable divalent hydroxyl compounds are ethylene glycol, 1,3-propane diol, 1,6-hexane diol, 1,12-dodecane diol, 3-methyl-1,5-pentane diol, 2,2,4-trimethyl-1,6-hexane diol, 2,2-dimethyl-1,3-propane diol, and 2-methyl-2-cyclohexyl-1,3-propane diol. Examples of suitable triols are glycerol, trimethylol ethane, and trimethylol propane. Suitable polyols having more than 3 hydroxyl groups are pentaerythritol, sorbitol, and etherification products of the compounds in question, such as ditrimethylol propane and di-, tri-, and tetrapentaerythritol. Preferably, use is made of compounds having 3-12 carbon atoms, e.g., glycerol, pentaerythritol and/or dipentaerythritol.
The alkyd resins can be obtained by direct esterification of the constituent components, with the option of a portion of these components having been converted already into ester diols or polyester diols. Alternatively, the unsaturated fatty acids can be added in the form of a drying oil, such as linseed oil, tuna fish oil, dehydrated castor oil, coconut oil, and dehydrated coconut oil. Transesterification with the other added acids and diols will then give the final alkyd resin. This transesterification generally takes place at a temperature in the range of 115 to 250° C., optionally with solvents such as toluene and/or xylene also present. The reaction generally is carried out in the presence of a catalytic amount of a transesterification catalyst. Examples of transesterification catalysts suitable for use include acids such as p-toluene sulphonic acid, a basic compound such as an amine, or compounds such as calcium oxide, zinc oxide, tetraisopropyl orthotitanate, dibutyl tin oxide, and triphenyl benzyl phosphonium chloride. The number average molecular weight of the alkyd resin thus prepared preferably is at least 1000 and not more than 2800; favourable results can also be achieved at higher molecular weights, but this will be at the expense of the solids content in the final coating composition.
The vinyl ether, acetal and/or alkoxysilane compounds used according to the invention preferably contain at least two vinyl ether, acetal and/or alkoxysilane groups and have a molecular weight of 150 or higher. Since most commercially available vinyl ether, acetal and/or alkoxysilane compounds contain only one vinyl ether, acetal and/or alkoxysilane group and in addition at most one functional amino, epoxy, thiol, isocyanate, acrylic, hydride or hydroxyl group, first an adduct is formed of such a compound to a compound having at least two groups capable of reacting with an amino, epoxy, thiol, isocyanate, acrylic, hydride or hydroxyl group. As examples may be mentioned compounds having an epoxy, isocyanate, hydroxyl and/or ester group or compounds with an ethylenically or ethynylenically unsaturated group incorporated therein.
Examples of at least difunctional, solid or liquid epoxy compounds suitable for use in the adduct in question include the di- or polyglycidyl ethers of (cyclo)aliphatic or aromatic hydroxy compounds such as ethylene glycol, glycerol, cyclohexane diol, mononuclear di- or polyvalent phenols, bisphenols such as Bisphenol-A and Bisphenol-F, and polynuclear phenols; glycidyl ethers of fatty acids having, say, 6-24 carbon atoms; glycidyl(meth)acrylate; an isocyanurate group-containing epoxy compounds, an epoxydated olybutadiene; hydantoin-epoxy resins; epoxy resins obtained by epoxydation of aliphatic and/or cycloaliphatic alkenes, such as dipentene dioxide, dicyclopentadiene dioxide, and vinyl cyclohexene dioxide, and glycidyl groups-containing resins such as polyesters or polyurethanes containing one or more glycidyl groups per molecule, or mixtures of the epoxy resins in question. The epoxy group in these compounds is suitable for reaction with the amino-functional and thiol-functional vinyl ether, acetal, and alkoxysilane compounds.
Examples of at least difunctional isocyanate compounds suitable for use in the adduct in question include aliphatic, cycloaliphatic or aromatic di-, tri- or tetraiso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-aqueous coating composition based on an oxidatively... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-aqueous coating composition based on an oxidatively..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-aqueous coating composition based on an oxidatively... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029571

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.