Non-adenoviral gene product-based complementing cells for...

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S366000, C435S367000, C435S368000, C435S369000, C435S370000, C435S371000, C435S372000, C435S373000, C435S372100, C435S372200, C435S320100, C435S455000, C435S457000

Reexamination Certificate

active

06677156

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to cells for the propagation of adenoviral vectors.
BACKGROUND OF THE INVENTION
Recombinant eukaryotic viral vectors have become a preferred means of gene transfer for many researchers and clinicians. The human adenovirus is one of the most widely used recombinant viral vectors in current gene therapy protocols. As the use of adenoviral vectors becomes more prevalent, the need for systems that efficiently produce adenoviral vectors suitable for administration is increasingly important.
A concern associated with recombinant adenoviral vectors is uncontrolled propagation of the vector upon administration. To address this concern, replication-deficient adenoviral vectors, typically lacking the essential E1 region of the adenoviral genome, have been developed.
The production of replication-deficient adenoviral vectors is commonly accomplished by use of a complementing cell line, such as the 293 cell line developed by Graham et al. (
J. Gen. Virol.,
36, 59-72 (1977)), which provides in trans the gene functions lacking in the replication-deficient adenoviral vector. A problem associated with many complementing cell lines, including the 293 cell line, is the possibility of homologous recombination between the replication-deficient adenoviral genome and the regions of the adenoviral genome inserted into the complementation cell, resulting in production of replication-competent adenovirus (RCA). To reduce the frequency of RCA formation, several researchers have attempted to construct complementing cell lines comprising viral gene sequences that lack any homology to the adenoviral vector of interest (see, for example, International Patent Applications WO 94/28152 and WO 98/39411, and U.S. Pat. No. 5,994,128 and 6,033,908).
The construction of stable human cell lines that effectively and efficiently complement replication-deficient viral vectors can be difficult. For example, such cell lines often produce significant quantities of E1 and/or E4 gene products, resulting in undesired cytotoxic and/or cytostatic effects. High levels of E1A gene product expression, for example, induce apoptosis in host cells (Rao et al.,
PNAS,
89, 7742-7746 (1992)), while expression of E4 gene products induce p53-independent apoptosis in human cells (Marcellus et al.,
J. Virol.,
72, 7144-53 (1998)). Thus, complementation cells, such as those known in the art, that constitutively express such factors may be associated with poor survival rates prior to and/or during adenoviral vector production.
Animal cells and other viruses encode gene products that are functionally homologous to adenoviral early region genes. Some of these gene products, when transiently expressed in human primary cells or non-human transformed cells, have been shown to complement for deficiencies in E1A gene functions. In particular, Tevethia et al.,
Virology,
161, 276-285 (1987), describes complementation in primary embryonic lung cells of an E1A-deleted adenoviral vector with plasmids encoding immediate early region genes of the human cytomegalovirus (CMV). In addition, the E7 protein of human papilloma virus 16 (HPV16) complements for deficiencies in the E1A region by immortalizing primary rat cells, as shown by co-infection experiments, while tamarin cells transformed by the Epstein-Barr virus (EBV) complement for deficiencies in the E1A and/or E2 regions (see, e.g., Kimura et al.,
Tumor Research,
32, 1-21 (1997), and Horvath et al.,
Virology,
184, 141-148 (1991)). Moreover, some cell lines, including the human hepatoblastoma line HepG2 and certain embryonic stem cell lines, encode factors that provide for the transcriptional transactivation function of the E1A region, as shown by activation of both E2A and/or E1B promoters in the absence of the E1A region (see, e.g., Spergel et al.,
Proc. Natl. Acad. Sci. USA,
88, 6472-6476 (1991), Spergel et al.,
J. Virol.,
66, 1021-1030 (1992), Imperiale et al.,
Mol. Cell Biol.,
4, 867-874 (1984), La Thangue and Rigby,
Cell,
49, 507-513(1987), and La Thangue et al.,
Nuc. Acids Res.,
18, 2929-2938 (1990)).
Accordingly, there remains a need for alternative cells for propagating replication-deficient adenoviral vectors. The invention provides such cells. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
BRIEF SUMMARY OF THE INVENTION
The invention provides a cell having a cellular genome comprising a heterologous nucleic acid sequence, which upon expression produces at least one non-adenoviral gene product. The non-adenoviral gene product complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome so as to propagate a replication-deficient adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions when present in the cell. The invention also provides a transformed human cell comprising a heterologous nucleic acid sequence which upon expression produces at least one non-adenoviral gene product that complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome so as to propagate a replication-deficient adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions when present in the cell.
The invention also provides a system comprising the inventive cell and a replication-defective adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions. The invention further provides a method of propagating a replication-deficient adenoviral vector, wherein the method comprises providing the inventive cell, introducing a replication-deficient adenoviral vector into the inventive cell, and maintaining the cell to propagate the replication-deficient adenoviral vector.
DETAILED DESCRIPTION OF THE INVENTION
The invention provides a cell having a cellular genome comprising at least one heterologous nucleic acid sequence, which upon expression produces at least one non-adenoviral gene product that complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome of a replication-deficient adenoviral vector so as to propagate (i.e., replicate the entire life cycle of, or replicate to any stage of the life cycle of) the replication-deficient adenoviral vector when present in the cell.
The cell can be any suitable cell that comprises a genome that can incorporate and preferably retain the heterologous nucleic acid encoding at least one non-adenoviral gene product that complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome. The cell desirably can propagate adenoviral vectors and/or adeno-associated viral (AAV) vectors when infected with such vectors or with nucleic acid sequences encoding the adenoviral or AAV genome. Most preferably, the cell can propagate a suitable replication-deficient adenoviral vector upon infection with an appropriate replication-deficient adenoviral vector or transfection with an appropriate replication-deficient viral genome.
Particularly desirable cell types are those that support high levels of adenovirus propagation. The cell preferably produces at least about 10,000 viral particles per cell and/or at least about 3,000 focus forming units (FFU) per cell. More preferably, the cell produces at least about 100,000 viral particles per cell and/or at least about 5,000 FFU per cell. Most preferably, the cell produces at least about 200,000 viral particles per cell and/or at least about 7,000 FFU per cell.
Preferably, the cell is, or is derived from, an anchorage dependent cell, but which has the capacity to grow in suspension cultures. More preferably, the cell is a primary cell. By “primary cell” is meant that the cell does not replicate indefinitely in culture. Exampl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-adenoviral gene product-based complementing cells for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-adenoviral gene product-based complementing cells for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-adenoviral gene product-based complementing cells for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.