Noise reduction in cable return paths

Interactive video distribution systems – Video distribution system with upstream communication – Transmission network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C725S126000, C455S307000, C455S340000

Reexamination Certificate

active

06321384

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to cable television systems in which a return communication path is provided.
BACKGROUND OF THE INVENTION
In cable TV systems, also known As Community Access Television (CATV) systems, a return path is often provided to allow signals from the subscriber equipment to be sent to the central control point, or head-end. The cable return path is typically used to allow subscribers to request movies by entering a request through their cable television receiving equipment (settop). The basic return service for purchasing movies is commonly referred to as “pay per view”. Because the CATV system offers a high bandwidth connection to the subscriber, there is the potential for providing a number of other services including video on demand,(VOD) in which a subscriber can instantaneously request, view, rewind, and fast-forward a movie. Personal computers can also be connected to the cable plant and data transmitted from the subscriber location to the head-end. In these applications the signaling from the subscriber equipment to the head-end is generally in the form of a packet of information. In the event that the packet is not received correctly, retransmission can be requested from the subscriber via a retransmission protocol communicated from the head-end to the subscriber equipment in the downstream link.
Telecommunications services can be provided by placing a transmitter and receiver with an appropriate line circuit to drive the telephone at the subscriber location. Such equipment can be located on the side of the subscriber's residence or in the basement of an apartment building or business location and is referred to herein as a coaxial termination unit. Services which would be provided by the coaxial termination unit include Plain Old Telephony service (POTs), advanced telephony services such as Integrated Services Digital Network (ISDN), videotelephony, and high speed data services including Asynchronous Transfer Mode (ATM). In these applications no retransmission protocol is utilized because of the high total data rate involved and the requirement for low network delay; it is therefore necessary to provide a low error rate connection both to and from the subscriber. A typical measure of the performance of the connection is the ratio of the number bits received in error to the number of correctly received bits, referred to as the bit error ratio or BER. For telecommunications links a BER of ≦10
−10
is the performance goal.
Because the configuration of the cable system is multipoint-to-point from the subscribers to the head-end, the return path has the undesirable characteristic of accumulating or “funneling” noise towards the head-end. The number of subscribers connected to the network is typically greater than 500, and many subscribers can have power dividers (splitters) installed in their homes to allow connection of multiple settops to the cable network. The result of the large number of subscribers and the multiple connections in the home is that there are a large number of points on the cable network where undesirable signals can enter the return path. The commonly used term for undesirable signals on the cable return path is ingress. Ingress is typically AM shortwave broadcast signals and industrial and atmospheric noise, which can enter on the drop cable connecting the subscriber to the cable plant connection termed the tap, and via the coaxial wiring in the subscriber residence or business location. The coaxial wiring used in the home may be of low quality, and will allow ingress because of the low amount of shielding provided with respect to high quality coaxial cable which has a dense braided wire shield which provides high isolation of the center conductor from external electromagnetic fields. The coaxial wiring in the home is also typically unterminated, and can act as an antenna since currents generated on the outside of the shield can to some extent couple to the inside of the shield at the unterminated end and subsequently excite the center conductor. The accumulation of noise on the return path has adversely limited the use of the return path for many purposes.
In some hybrid cable systems lasers are used to transmit signals over an optical fiber to an intermediate location (a node) where the optical signal is converted to an electrical signal and transmitted to the subscriber on coaxial cable. Such a configuration is commonly referred to as a hybrid fiber-coax system. A similar hybrid fiber-coax configuration is used in the return path, where signals from the subscriber are transmitted in a low frequency band (e.g. 5-30 MHz) on the coaxial cable, and subsequently modulated onto a laser for transmission from the node to the head-end via optical cable. In hybrid fiber-coax transmission systems, the noise in the return path is a concern not only because of the resulting degradation in signal-to-noise or signal-to-interference ratio, but because when the total noise is significant the laser may be overmodulated, with the result being that the laser momentarily shuts off or “clips”. Because additional communications services are being planned which will utilize the return path, the amount of information the return laser will be required to transmit will increase, and it is possible that clipping in the return path laser will become a limitation in the return path system performance. Use of a lower degree of optical modulation can have economical disadvantages since in order to maintain the same signal-to-noise ratio on an optical link, lowering the degree of optical modulation will require the use of a more powerful and hence more expensive laser. It is thus important to limit the amount of noise in the return path to reduce the noise power to the laser, as well as to maintain a high signal-to-noise and signal-to-interference ratio.
SUMMARY OF THE INVENTION
The present invention is embodied in a method in which noise and interference are significantly reduced in cable return systems by the use of blocking filters which keep undesirable signals generated in the home from entering the cable return system.
The cable return band is divided into two frequency bands, a first frequency band for transmissions from television settops or personal computers located inside the subscriber residence or business location, and a second frequency band for transmissions from a telecommunications terminal which is located at the side of the residence or in the basement. In the second frequency band, signals coming from the cables inside the residence are highly attenuated in a blocking filter so that noise and undesirable signals originating from inside the home in the second frequency band are effectively blocked from entering the return system. Signals from inside the home can be transmitted in the first frequency band at a power high enough to overcome signal-to-noise and signal-to-interference limitations. In the event that these signals are too high in power for the active elements (e.g. amplifiers and/or lasers)to retransmit them without distortion, they can be attenuated at the input of the active devices. Signals from the telecommunications terminal are transmitted in the second band and are coupled into the return path after the blocking filter. The second frequency band has less noise due to the presence of the attenuating filters on the subscriber residences.
By blocking signals from inside the residence in the second band, the total noise power in the return path is reduced, thus reducing the amount of power which modulates the return path laser. The reduction in power helps prevent overdriving of the laser. The present invention thus not only serves to reduce interfering signals in the second return frequency band and thus provide a high signal-to-interference ratio for telecommunications signals, but will greatly reduce the total amount of noise in the return path.
In a typical application the present invention would be realized by deploying a telecommunications terminal referred to as a coaxial terminati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Noise reduction in cable return paths does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Noise reduction in cable return paths, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Noise reduction in cable return paths will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.