Noise control device

Electrical audio signal processing systems and devices – Electro-acoustic audio transducer – Housed microphone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S355000, C381S361000, C379S433020

Reexamination Certificate

active

06285772

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to noise-canceling microphones and related devices. More particularly, this invention relates to a bi-directional noise control device for use in environments that have random ambient noise.
Microphone units typically operate in environments where unwanted noise is present. For example, a person listening to someone talking on the telephone may be distracted from the speaker's voice because of background noise emanating from machinery, traffic, appliances, or other ambient sounds. Background noises may be reduced for the listener if the person talking into the telephone is using a noise-canceling type microphone.
Many noise-canceling microphone element designs employ front and rear sound ports which allow sound to enter both sound ports and impinge upon the diaphragm simultaneously in opposite directions resulting in little or no signal being generated by the microphone. This technique is applied in a wide variety of cardioid microphones as well as telephone handset transmitters and headsets. Some of these microphones employ acoustic tuning to the rear port to make the microphone more frequency-responsive.
Noise-canceling microphones depend upon two factors for their operation. The first factor is the polar pattern of the microphone (usually bi-directional) and the assumption that the noise to be reduced is not on the maximum sensitivity axis of the microphone. The second factor is the different responses of the bi-directional microphone for a sound source close to the microphone, such as sound entering the front sound port, and a sound source at a distance to the microphone, such as sound entering the front and rear sound ports.
When the sound source is close to the front sound port of the microphone, the sound pressure will be several times greater at the front sound port than at the rear sound port. Since the microphone responds to the difference of sound pressure at the two entries, someone talking close to the microphone will provide a substantially higher signal strength than a remote sound, where the sound pressure is equal in magnitude at the two entry ports
Because of construction restraints inherent in front and rear sound port microphone designs, one port of the microphone is always more sensitive than the other. This results from the need to provide a supporting structure for the diaphragm and the resulting impedance that the structure presents to sound entering the rear sound port microphone element. It is common practice for the more sensitive port to be faced forward to capture the desired sound while the less sensitive port is utilized for capturing and reducing or nullifying the undesired background noises.
If the front and back sensitivities of the microphone element were equal, then theoretically 100% noise rejection would be possible whenever noise of equal pressure were subjected to both entrances to the microphone. In practice, however, only 10-20 dB noise reduction is possible using the currently available microphone elements for frequencies below approximately three KHz.
Frequency response is another factor that differentiates noise-canceling microphones. Frequency response is essentially flat in the near field (a sound source close to the front sound port) over the audio band. In the far field (a remote sound source), the frequency response increases in frequency until the pressures at the front and rear sound ports of the unit are 180 degrees out of phase, at which point resonance occurs. At some frequency, the microphone becomes more sensitive to axial far-field sounds than axial near-field sounds. This crossover frequency will occur at a higher frequency for a microphone with a shorter port separation than a microphone with a longer port separation.
Several devices, both electrical and mechanical, used for noise-cancellation purposes exist but have potential drawbacks such as the need for preprocessing. The negative effects of reflections, calibration difficulties, high costs, and operating environments also pose problems. For example, in environments in which human speech is the ambient noise, signal-processing techniques such as filtering cannot effectively be used because the ambient human speech is at the same frequency as the desired speaker's voice and because the ambient noise is random, non-constant or non-periodic.
SUMMARY OF THE INVENTION
The apparatus of the present invention enhances the performance of pressure differential microphones used to cancel or reject background noise. When the pressure differential microphone and the apparatus of the present invention are used together, they form an electroacoustic noise rejection system exceeding the performance of commercially available technologies.
The present invention provides a high degree of cancellation of the impingement of ambient noise upon the front surface of a pressure differential microphone by directing the same ambient noise upon the back side of the microphone. The present invention causes ambient noise, including voice, non-constant noise, non-periodic noise, and random noise, to enter the microphone on both sides of the microphone simultaneously with the strength of the sound on the back side being relatively slightly higher to overcome the relatively higher impedance of the back side of the microphone, thus nullifying the effect of the noise sound waves. Furthermore, the present invention deflects the user's voice (the desired sound to be transmitted) away from the back side of the microphone.
The present invention utilizes one or more curved surfaces that act as a reflector to direct ambient noise onto the back side of the microphone, even when the rear port of the microphone is not aligned with the source of the greatest ambient noise. In addition, the sound pressure of the ambient noise entering the back side of the microphone is increased by the reflector. The ambient noise sound waves entering the front of the microphone are canceled at the microphone by the same ambient noise converging upon the back surface of the microphone. The curved reflector also acts to deflect the speaking voice away from the back side of the microphone so that the user's voice enters the front side of the microphone only, essentially preventing self-cancellation of the user's voice.
In accordance with the present invention, a noise-controlling apparatus for use with a directional microphone is provided, comprising a housing having a barrier element and a base element, the barrier element housing the microphone, the base element having a curved reflector surface extending from the back side of the barrier element, the curved reflector surface deflecting a user's voice away from the microphone and deflecting ambient noise toward the microphone.
In another aspect of the invention, a noise-controlling apparatus is provided comprising a microphone having a sound-receiving front side and a sound-receiving back side, a housing having a barrier element, the barrier element defining a sound opening that extends from a front side of the barrier element to a back side of the barrier element, and a housing having a curved reflector surface positioned adjacent to the back side of the barrier element to deflect a user's voice away from and to direct ambient noise to the sound-receiving back side of the microphone.
In one aspect of the present invention, a noise-controlling apparatus for use with a directional microphone is provided. The device has a housing with a barrier element and a base element. The barrier element has an opening that extends from the front side to the back side of the barrier element. A directional microphone is located in the barrier element opening. The housing also has a curved surface that extends radially about a main longitudinal Z axis. The curved surface acts as a reflector that extends away from the back side of the barrier element. The reflector deflects a user's voice away from the back side of the microphone but deflects ambient noise to the back side of the microphone.
T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Noise control device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Noise control device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Noise control device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2530458

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.