Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Compound of indeterminate structure – prepared by reacting a...
Reexamination Certificate
2001-04-30
2002-11-26
Howard, Jacqueline V. (Department: 1764)
Solid anti-friction devices, materials therefor, lubricant or se
Lubricants or separants for moving solid surfaces and...
Compound of indeterminate structure, prepared by reacting a...
C508S186000, C508S231000, C508S236000, C508S279000, C508S454000
Reexamination Certificate
active
06486101
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to dispersant-viscosity improvers for lubricating oils and fuels, processes for preparing them, additive concentrates, and lubricating oil and fuel compositions.
BACKGROUND OF THE INVENTION
The viscosity of hydrocarbonaceous liquids, for example fuels and lubricating oils, particularly the viscosity of mineral oil based lubricating oils, is generally dependent upon temperature. As the temperature of the oil is increased, the viscosity usually decreases.
The function of a viscosity improver is to reduce the extent of the decrease in viscosity as the temperature is raised or to reduce the extent of the increase in viscosity as the temperature is lowered, or both. Thus, a viscosity improver ameliorates the change of viscosity of an oil containing it with changes in temperature. The fluidity characteristics of the oil are improved.
Viscosity improvers are usually polymeric materials and are often referred to as viscosity index improvers.
Dispersants are also well-known in the art. Dispersants are employed in lubricants to keep impurities, particularly those formed during operation of mechanical devices such as internal combustion engines, automatic transmissions, etc. in suspension rather than allowing them to deposit as sludge or other deposits on the surfaces of lubricated parts.
Multifunctional additives that provide both viscosity improving properties and dispersant properties are likewise known in the art. Such products are described in numerous publications including Dieter Klamann, “Lubricants and Related Products”, Verlag Chemie Gmbh (1984), pp. 185-193; C. V. Smalheer and R. K. Smith, “Lubricant Additives”, Lezius-Hiles Co. (1967); M. W. Ranney, “Lubricant Additives”, Noyes Data Corp. (1973), pp. 92-145, M. W. Ranney, “Lubricant Additives, Recent Developments”, Noyes Data Corp. (1978), pp. 139-164; and M. W. Ranney, “Synthetic Oils and Additives for Lubricants”, Noyes Data Corp. (1980), pp. 96-166. Each of these publications is hereby expressly incorporated herein by reference.
Dispersant-viscosity improvers are generally prepared by functionalizing, i.e., adding polar groups, to a hydrocarbon polymer.
Hayashi et al, U.S. Pat. No. 4,670,173 relates to compositions suitable for use as dispersant-viscosity improvers made by reacting an acylating reaction product which is formed by reacting a hydrogenated block copolymer and an alpha,beta olefinically unsaturated reagent in the presence of free-radical initiators, then reacting the acylating product with a primary amine and optionally with a polyamine and a mono-functional acid.
Chung et al, U.S. Pat. No. 5,035,821 relates to viscosity index improver-dispersants comprised of the reaction products of an ethylene copolymer grafted with ethylenically unsaturated carboxylic acid moieties, a polyamine having two or more primary amino groups or polyol and a high functionality long chain hydrocarbyl substituted dicarboxylic acid or anhydride.
Van Zon et al, U.S. Pat. No. 5,049,294, relates to dispersant/VI improvers produced by reacting an alpha,beta-unsaturated carboxylic acid with a selectively hydrogenated star-shaped polymer then reacting the product so formed with a long chain alkane-substituted carboxylic acid and with a C
1
to C
18
amine containing 1 to 8 nitrogen atoms and/or with an alkane polyol having at least two hydroxy groups or with the preformed product thereof.
Bloch et al, U.S. Pat. No. 4,517,104, relates to oil soluble viscosity improving ethylene copolymers reacted or grafted with ethylenically unsaturated carboxylic acid moieties then with polyamines having two or more primary amine groups and a carboxylic acid component or the preformed reaction product thereof.
Gutierrez et al, U.S. Pat. No. 4,632,769, describes oil-soluble viscosity improving ethylene copolymers reacted or grafted with ethylenically unsaturated carboxylic acid moieties and reacted with polyamines having two or more primary amine groups and a C
22
to C
28
olefin carboxylic acid component.
Lange, et al, U.S. Pat. No. 4,491,527 relates to ester-heterocycle compositions useful as “lead paint” inhibitors in lubricants. The compositions comprise derivatives of substituted carboxylic acids in which the substituent is a substantially aliphatic, substantially saturated hydrocarbon based radical containing at least about 30 aliphatic carbon atoms; said derivatives being the combination of: (A) at least one ester of said carboxylic acids in which all the alcohol moieties are derived from at least on mono- or polyhydroxyalkane; and (B) at least one heterocyclic condensation product of said substituted carboxylic acids containing at least one heterocyclic moiety which includes a 5- or 6-membered ring which contains at least two ring hetero atoms selected from the group consisting of oxygen, sulfur and nitrogen separated by a single carbon atom, at least one of said hetero atoms being nitrogen, and at least one carboxylic moiety; the carboxylic and heterocyclic moieties either being linked through an ester or amide linkage or being the same moiety in which said single carbon atom separating two ring hetero atoms corresponds to a carbonyl carbon atom of the substituted carboxylic acid.
Lange, et al, U.S. Pat. No. 5,512,192 teach dispersant viscosity improvers for lubricating oil compositions comprising a vinyl substituted aromatic-aliphatic conjugated diene block copolymer grafted with an ethylenically unsaturated carboxylic acid reacted with at least one polyester containing at least one condensable hydroxy group and at least one polyamine having at least one condensable primary or secondary amino group, and optionally, at least one hydrocarbyl substituted carboxylic acid or anhydride.
Lange, U.S. Pat. No. 5,540,851 describes dispersant viscosity improvers for lubricating oil compositions which are the reaction product of (a) an oil soluble ethylene-alpha olefin copolymer wherein the alpha olefin is selected from the group consisting of C
3-28
alpha olefins, said polymer having a number average molecular weight ranging from about 30,000 to about 300,000 grafted with an ethylenically unsaturated carboxylic acid or functional derivative thereof, with at least one polyester containing at least one condensable hydroxyl group, and at least one polyamine having at least one condensable primary or secondary amino group, and optionally at least one hydrocarbyl substituted carboxylic acid or anhydride.
Each of these patents is hereby expressly incorporated herein by reference.
For additional disclosures concerning multi-purpose additives and particularly viscosity improvers and dispersants, the disclosures of the following United States patents are incorporated herein by reference:
2,973,344
3,488,049
3,799,877
3,278,550
3,513,095
3,842,010
3,311,558
3,563,960
3,864,098
3,312,619
3,598,738
3,864,268
3,326,804
3,615,288
3,879,304
3,403,011
3,637,610
4,033,889
3,404,091
3,652,239
4,051,048
3,445,389
3,687,849
4,234,435
Many such additives are frequently derived from carboxylic reactants, for example, acids, esters, anhydrides, lactones, and others. Specific examples of commonly used carboxylic compounds used as intermediates for preparing lubricating oil additives include alkyl- and alkenyl substituted succinic acids and anhydrides, polyolefin substituted carboxylic acids, aromatic acids, such as salicylic acids, and others. Illustrative carboxylic compounds are described in Meinhardt, et al, U.S. Pat. No. 4,234,435; Norman et al, U.S. Pat. No. 3,172,892; LeSuer et al, U.S. Pat. No. 3,454,607, and Rense, U.S. Pat. No. 3,215,707.
All of the foregoing patents and publications and all of those mentioned hereinafter are hereby incorporated herein by reference.
Many carboxylic intermediates used in the preparation of lubricating oil additives contain chlorine. While the amount of chlorine present is often only a very small amount of the total weight of the intermediate, the chlorine frequently is carried over into the carboxylic derivative which is desired as an additive. For a variety of reasons, including environmenta
Lange Richard M.
Luciani Carmen V.
Vargo Daniel M.
Esposito Michael F.
Gilbert Teresan W.
Howard Jacqueline V.
Shold David M.
The Lubrizol Corporation
LandOfFree
Nitrogen containing dispersant-viscosity improvers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nitrogen containing dispersant-viscosity improvers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nitrogen containing dispersant-viscosity improvers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986207