Nitride-based transistors and methods of fabrication thereof...

Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Field effect transistor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S192000, C257SE29246, C257SE29248, C257SE29249, C257SE29253, C257S012000

Reexamination Certificate

active

07550784

ABSTRACT:
Contacts for a nitride based transistor and methods of fabricating such contacts provide a recess through a regrowth process. The contacts are formed in the recess. The regrowth process includes fabricating a first cap layer comprising a Group III-nitride semiconductor material. A mask is fabricated and patterned on the first cap layer. The pattern of the mask corresponds to the pattern of the recesses for the contacts. A second cap layer comprising a Group III-nitride semiconductor material is selectively fabricated (e.g. grown) on the first cap layer utilizing the patterned mask. Additional layers may also be formed on the second cap layer. The mask may be removed to provide recess(es) to the first cap layer, and contact(s) may be formed in the recess(es). Alternatively, the mask may comprise a conductive material upon which a contact may be formed, and may not require removal.

REFERENCES:
patent: 4424525 (1984-01-01), Mimura
patent: 4471366 (1984-09-01), Delagebeaudeuf et al.
patent: 4727403 (1988-02-01), Hilda et al.
patent: 4755867 (1988-07-01), Cheng
patent: 4788156 (1988-11-01), Stoneham et al.
patent: 4946547 (1990-08-01), Palmour et al.
patent: 5053348 (1991-10-01), Mishra et al.
patent: 5172197 (1992-12-01), Nguyen et al.
patent: 5192987 (1993-03-01), Khan et al.
patent: 5200022 (1993-04-01), Kong et al.
patent: 5210051 (1993-05-01), Carter, Jr.
patent: 5292501 (1994-03-01), Degenhardt et al.
patent: 5296395 (1994-03-01), Khan et al.
patent: 5298445 (1994-03-01), Asano
patent: RE34861 (1995-02-01), Davis et al.
patent: 5393993 (1995-02-01), Edmond et al.
patent: 5523589 (1996-06-01), Edmond et al.
patent: 5534462 (1996-07-01), Fiordalice et al.
patent: 5592501 (1997-01-01), Edmond et al.
patent: 5670798 (1997-09-01), Schetzina
patent: 5686737 (1997-11-01), Allen
patent: 5700714 (1997-12-01), Ogihara et al.
patent: 5701019 (1997-12-01), Matsumoto et al.
patent: 5705827 (1998-01-01), Baba et al.
patent: 5804482 (1998-09-01), Konstantinov et al.
patent: 5885860 (1999-03-01), Weitzel et al.
patent: 5929467 (1999-07-01), Kawai et al.
patent: 6028328 (2000-02-01), Riechert et al.
patent: 6046464 (2000-04-01), Schetzina
patent: 6064082 (2000-05-01), Kawai et al.
patent: 6086673 (2000-07-01), Molnar
patent: 6150680 (2000-11-01), Eastman et al.
patent: 6177685 (2001-01-01), Teraguchi et al.
patent: 6218680 (2001-04-01), Carter, Jr. et al.
patent: 6316793 (2001-11-01), Sheppard et al.
patent: 6429467 (2002-08-01), Ando
patent: 6448648 (2002-09-01), Boos
patent: 6492669 (2002-12-01), Nakayama et al.
patent: 6515316 (2003-02-01), Wojtowicz
patent: 6548333 (2003-04-01), Smith
patent: 6586781 (2003-07-01), Wu et al.
patent: 6639255 (2003-10-01), Inoue et al.
patent: 2001/0015446 (2001-08-01), Inoue et al.
patent: 2001/0020700 (2001-09-01), Inoue et al.
patent: 2001/0023964 (2001-09-01), Wu et al.
patent: 2001/0040246 (2001-11-01), Ishii
patent: 2002/0008241 (2002-01-01), Edmond et al.
patent: 2002/0017696 (2002-02-01), Nakayama et al.
patent: 2002/0066908 (2002-06-01), Smith
patent: 2002/0119610 (2002-08-01), Nishii et al.
patent: 2002/0167023 (2002-11-01), Charvarkar et al.
patent: 2002/0185655 (2002-12-01), Fahimulla et al.
patent: 2003/0017683 (2003-01-01), Emrick et al.
patent: 2003/0020092 (2003-01-01), Parikh et al.
patent: 2003/0102482 (2003-06-01), Saxler
patent: 2003/0123829 (2003-07-01), Taylor
patent: 2003/0157776 (2003-08-01), Smith
patent: 2003/0213975 (2003-11-01), Hirose et al.
patent: 2003/0218183 (2003-11-01), Micovic et al.
patent: 2004/0004223 (2004-01-01), Nagahama et al.
patent: 2004/0021152 (2004-02-01), Nguyen et al.
patent: 2004/0029330 (2004-02-01), Hussain et al.
patent: 2004/0241970 (2004-12-01), Ring
patent: 0 334 006 (1989-09-01), None
patent: 0 563 847 (1993-10-01), None
patent: 10-050982 (1998-02-01), None
patent: 11261053 (1999-09-01), None
patent: 02001230407 (2001-08-01), None
patent: 02002016087 (2002-01-01), None
patent: 2004-342810 (2004-12-01), None
patent: WO 93/23877 (1993-11-01), None
patent: WO 01/57929 (2001-08-01), None
patent: WO 02/48434 (2002-06-01), None
patent: WO03/049193 (2003-06-01), None
patent: WO 2004/008495 (2004-01-01), None
Beaumont, B. et al., “Epitaxial Lateral Overgrowth of GaN,”Phys. Stat. Sol.(b) 227, No. 1, pp. 1-43 (2001).
Ando et al., “10-W/mm AlGaN-GaN HFET With a Field Modulating Plate,”IEEE Electron Device Letters, 24(5), pp. 289-291 (May 2003).
Chang et al., “AlGaN/GaN Modulation-Doped Field-Effect Transistors with an Mg-doped Carrier Confinement Layer,”Jpn. J. Appl. Phys., 42:3316-3319 (2003).
Chini et al., “Power and Linearity Characteristics of Field-Plagted Recessed-Gate AlGaN-GaN HEMTs,”IEEE Electron Device Letters, 25(5), pp. 229-231 (May 2004).
Cho et al., “A New GaAs Field Effect Transistor (FET) with Dipole Barrier (DIB),”Jpn. J. Appl. Phys.33:775-778 (1994).
Coffie et al., Unpassivated p-GaN/AlGaN/GaN HEMTs with 7.1 W/MMF at 10 GHz,Electronic Letters onlineNo. 20030872, 39(19), (Sep. 18, 2003).
Gaska et al., “Self-Heating in High-Power AlGaN/GaN HFET's,”IEEE Electron Device Letters, 19(3), pp. 89-91 (Mar. 1998).
Hikita et al., “350V/150A AlGaN/GaN Power HFET on Silicon Substrate With Source-via Grouding (SVG) Structure,”Electron Devices Meeting, 2004, pp. 803-806, IEDM Technical Digest. IEEE International (Dec. 2004).
Kanaev et al., “Femtosecond and Ultraviolet Laser Irradiation of Graphitelike Hexagonal Boron Nitride,”Journal of Applied Physics, 96(8), pp. 4483-4489 (Oct. 15, 2004).
Kanamura et al., “A 100-W High-Gain AlGaN/GaN HEMT Power Amplifier on a Conductive N-SiC Substrate for Wireless Base Station Applications,”Electron Devices Meeting, 2004, pp. 799-802, IEDM Technical Digest. IEEE International (Dec. 2004).
Karmalkar et al., “Very High Voltage AlGaN/GaN High Electron Mobility Transistors Using a Field Plate Deposited on a Stepped Insulator,”Solid State Electronics, vol. 45, pp. 1645-1652 (2001).
Kashahara et al., “Ka-ban 2.3W Power AlGaN/GaN Heterojunction FET,”IEDM Technical Digest, pp. 677-680 (2002).
Komiak et al., “Fully Monolithic 4 Watt High Efficiency Ka-band Power Amplifier,”IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 947-950 (1999).
Küsters et al., “Double-Heterojunction Lattice-Matched and Pseudomorphic InGaAs HEMT with δ-Doped InP Supply Layers and p-InP Barier Enhancement Layer Grown by LP-MOVPE,”IEEE Electron Device Letters, 14(1), (Jan. 1993).
Manfra et al., “Electron Mobility Exceeding 160 000 cm2N s in AlGaN/GaN Heterostructures Grown by Molecular-beam Epitaxy,”Applied Physics Letters, 85(22), pp. 5394-5396 (Nov. 29, 2004).
Manfra et al., “High Mobility AlGaN/GaN Heterostructures Grown by Plasma-assisted Molecular beam epitaxy on Semi-Insulating GaN Templates Prepared by Hydride Vapor Phase Epitaxy,”Journal of Applied Physics, 92(1), pp. 338-345 (Jul. 1, 2002).
Manfra et al., “High-Mobility AlGaN/GaN Heterostructures Grown by Molecular-beam Epitaxy on GaN Templates Prepared by Hydride Vapor Phase Epitaxy,”Applied Physics Letters, 77(18), pp. 2888-2890 (Oct. 30, 2000).
Parikh et al., “Development of Gallium Nitride Epitaxy and Associated Material-Device Correlation for RF, Microwave and MM-wave Applications,” Cree, Inc. (35 slides), filed Jun. 16, 2005.
Saxler et al., “III-Nitride Heterostructures on High-Purity Semi-Insulating 4H-SiC Substrates for High-Power RF Transistors,” International Workshop on Nitride Semiconductors (Jul. 19, 2004).
Shiojima et al., “Improved Carrier Confinement by a Buried p-Layer in the AlGaN/GaN HEMT Structure,”IEICE Trans. Electron., E83-C(12), (Dec. 2000).
“Thick AIN template on SiC substrate—Novel semi insulating substrate for GaN-based devices,” © 2003 by TDI, Inc., http://www.tdii.com/products/AIN—SiCT.html.
Tilak et al., “Influence of Barrier Thickness on the High-Power Performance of AlGaN/GaN HEMTs,”I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nitride-based transistors and methods of fabrication thereof... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nitride-based transistors and methods of fabrication thereof..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nitride-based transistors and methods of fabrication thereof... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4116025

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.