Surgery – Diagnostic testing – Flexible catheter guide
Reexamination Certificate
1999-12-13
2002-03-05
Lacyk, John P. (Department: 3736)
Surgery
Diagnostic testing
Flexible catheter guide
C604S523000
Reexamination Certificate
active
06352515
ABSTRACT:
FIELD OF INVENTION
This invention relates to the field of guidewires for advancing intraluminal devices such as stent delivery catheters, balloon dilatation catheters, atherectomy catheters and the like within body lumens.
BACKGROUND OF THE INVENTION
Conventional guidewires for angioplasty and other vascular procedures usually comprise an elongated core member with one or more tapered sections near the distal end thereof and a flexible body such as a helical coil disposed about the distal portion of the core member. A shapeable member, which may be the distal extremity of the core member or a separate shaping ribbon which is secured to the distal extremity of the core member extends through the flexible body and is secured to a rounded plug at the distal end of the flexible body. Torquing means are provided on the proximal end of the core member to rotate, and thereby steer, the guidewire while it is being advanced through a patient's vascular system.
In a typical coronary procedure, a guiding catheter having a preformed distal tip is percutaneously introduced into a patient's peripheral artery, e.g. femoral or brachial artery, by means of a conventional Seldinger technique and advanced therein until the distal tip of the guiding catheter is seated in the ostium of a desired coronary artery. A guidewire is positioned within an inner lumen of a dilatation catheter and then both are advanced through the guiding catheter to the distal end thereof. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary vasculature until the distal end of the guidewire crosses a lesion to be dilated, then the dilatation catheter having an inflatable balloon on the distal portion thereof is advanced into the patient's coronary anatomy over the previously introduced guidewire until the balloon of the dilatation catheter is properly positioned across the lesion. Once in position across the lesion, the procedure is performed.
A requirement for guidewires is that they have sufficient column strength to be pushed through a patient's vascular system or other body lumen without kinking. However, guidewires must also be flexible enough to avoid damaging the blood vessel or other body lumen through which they are advanced. Efforts have been made to improve both the strength and flexibility of guidewires to make them more suitable for their intended uses, but these two properties are for the most part, diametrically opposed to one another in that an increase in one usually involves a decrease in the other.
Further details of guidewires, and devices associated therewith for various interventional procedures can be found in U.S. Pat. No. 4,748,986 (Morrison et al.); U.S. Pat. No. 4,538,622 (Samson et al.): U.S. Pat. No. 5,135,503 (Abrams); U.S. Pat. No. 5,341,818 (Abrams et al.); and U.S. Pat. No. 5,345,945 (Hodgson et al.); all of which are incorporated herein in their entirety by reference.
Some guidewires have been formed from a pseudoelastic alloy such as a NITINOL (nickel-titanium or NiTi) alloy, to achieve both flexibility and strength. When stress is applied to NITINOL alloy exhibiting pseudoelastic characteristics at a temperature at or above which the transformation of martensite phase to the austenite phase is complete, the specimen deforms elastically until it reaches a particular stress level where the alloy then undergoes a stress-induced phase transformation from the austenite phase to the martensite phase. As the phase transformation proceeds, the alloy undergoes significant increases in strain but with little or no corresponding increases in stress. The strain increases while the stress remains essentially constant until the transformation of the austenite phase to the martensite phase is complete. Thereafter, further increase in stress are necessary to cause further deformation.
If the load on the specimen is removed before any permanent deformation has occurred, the martensitic phase of the specimen will elastically recover and transform back to the austenite phase. The reduction in stress first causes a decrease in strain. As stress reduction reaches the level at which the martensite phase transforms back into the austenite phase, the stress level in the specimen will remain essentially constant until the transformation back to the austenite phase is complete, i.e. there is significant recovery in strain with only negligible corresponding stress reduction. After the transformation back to austenite is complete, further stress reduction results in elastic strain reduction. This ability to incur significant strain at relatively constant stress upon the application of a load and to recover from the deformation upon the removal of the load is commonly referred to as pseudoelasticity. These properties to a large degree allow a guidewire core of a pseudoelastic material to have both flexibility and strength.
While the properties of the guidewire formed of the superelastic material were very advantageous, it was found that the guidewires and guiding members formed of materials having superelastic characteristics did not have optimum push and torque characteristics.
SUMMARY OF THE INVENTION
The present invention is directed to an intracorporeal device, preferably a guidewire, and method for making the same. The device, has proximal and distal ends and includes an elongated high strength proximal portion having proximal and distal ends. The device further includes a distal portion having proximal and distal ends. The distal end of the proximal portion and the proximal end of the distal portion are connected by a connector. The distal portion is formed of a superelastic alloy composition. Preferably, the connector is also formed of the superelastic alloy composition. The superelastic alloy composition includes, in atomic percent, from about 28 to about 52% nickel, from about 48 to about 52% titanium, and up to about 20% of least one alloying element selected from the group consisting of palladium, chromium, and hafnium, preferably, palladium.
When the alloying element is hafnium or palladium, the alloying element may be present, in atomic percent, in a range from about 3 to about 20%. Preferably, the hafnium or palladium may be present, in atomic percent, in a range from about 5 to about 11%.
When the alloying element is chromium, the alloying element is present, in atomic percent, in a range up to about 3%. Preferably, the chromium may be present, in atomic percent, in a range from about 0.1 to about 1%. More preferably, the chromium may be present, in atomic percent, in a range from about 0.2 to about 0.5%.
REFERENCES:
patent: 4538622 (1985-09-01), Samson et al.
patent: 4748986 (1988-06-01), Morrison et al.
patent: 5135503 (1992-08-01), Abrams
patent: 5341818 (1994-08-01), Abrams et al.
patent: 5345945 (1994-09-01), Hodgson et al.
patent: 5411476 (1995-05-01), Abrams et al.
patent: 5720300 (1998-02-01), Fagan et al.
patent: 5833631 (1998-11-01), Nguyen
patent: 5885381 (1999-03-01), Mitose et al.
patent: 5951793 (1999-09-01), Mitose et al.
patent: 0 873 734 (1998-10-01), None
U.S. Department of Commerce National Technical Information Service,Effects of Alloying Upon Certain Properties of 55.1 Nitinol, May 28, 1965.
Anderson David M.
Cornish Wayne E.
Jalisi Marc Mehrzad
Nicotra Nancy
Richardson Mark T.
Advanced Cardiovascular Systems Inc.
Fulwider Patton Lee & Utecht LLP
Lacyk John P.
Wingood Pamela L.
LandOfFree
NiTi alloyed guidewires does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with NiTi alloyed guidewires, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and NiTi alloyed guidewires will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887342