Nickel coated copper as electrodes for embedded passive devices

Stock material or miscellaneous articles – All metal or with adjacent metals – Foil or filament smaller than 6 mils

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S621000, C428S675000, C428S687000, C428S935000, C205S111000, C205S181000, C205S206000, C205S215000

Reexamination Certificate

active

06610417

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the production of passive circuit devices such as resistors, capacitors and inductors that can be embedded in printed circuit boards (PCB's). Such may be formed using an electrically conductive substrate comprising a copper foil having a thin layer of nickel on both sides of the copper foil as the primary electrode.
2. Description of the Related Art
Printed circuit boards are well known in the field of electronics, and are used for a wide variety of commercial and consumer electronic applications. They are useful for large scale applications, such as in missiles and industrial control equipment, as well as in small scale devices. For example, they can be found inside radio and television sets, telephone systems, automobile dashboards and computers. They also play an important role in the operation of airborne avionics and guidance systems. The surface area on printed circuit boards for the mounting of components is becoming a limiting form factor as the need for function and speed increases. Currently, 40+% of the surface area of conventional PCB's is occupied by passive devices, such as resistors, capacitors and inductors. Through the redesign of these devices into a planar configuration, they can be embedded in the body of the printed circuit board thereby increasing available surface area for active devices.
It is known in the art to produce printed circuit boards having integrated resistors, capacitors and magnetic components such as inductors and transducers. There are various available technologies that partially address the technological requirements for the fabrication of passive devices, but each has a its drawbacks. This invention enables the fabrication of planar passive devices that may be embedded in the body of a printed circuit board. Further, the nickel layer allows for the fabrication of devices with wider performance spectra thereby increasing scope of application. Additionally, nickel whether as a pure metal or in alloy form is known to increase foil adhesion to resins commonly used in the construction of printed circuit boards, has an affinity for ceramics and metal oxides and has added benefits of increasing thermal stability and resistance to chemical corrosion. The invention provides foil planes that can be separated by a dielectric medium and can be configured to act as a capacitor. The foil can also be coated with resistive or inductive material in order to perform these functions. Improved adhesion to these materials and enhanced thermal stability are important features of the invention. Processes for imaging and generating clearance holes and other circuit features using photoresists and chemical etching techniques are well known. The passive elements may then be embedded into the printed circuit board of an integrated circuit package by standard lamination techniques.
SUMMARY OF THE INVENTION
The invention provides an electrically conductive substrate comprising a copper foil having opposite surfaces, wherein one or both of the opposite surfaces have optionally been subjected to a electrochemical polishing treatment, a mechanical polishing treatment or a roughening treatment; and a layer of nickel each of the opposite surfaces.
The invention also provides a process for producing an electrically conductive substrate comprising forming a copper foil having opposite surfaces; optionally subjecting one or both of the opposite surfaces to a electrochemical polishing treatment, a mechanical polishing treatment or a roughening treatment; and depositing a layer of nickel onto each of the opposite surfaces.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
An electrically conductive substrate is provided comprising a copper foil having opposite surfaces, wherein one or both of the opposite surfaces have optionally been subjected to a electrochemical polishing treatment, a mechanical polishing treatment, or a roughening treatment; and a layer of nickel each of the opposite surfaces.
The first step in the process of the invention is to produce a metal foil, preferably copper, by either electroplating onto a rotating drum or by rolling a copper ingot with subsequent annealing. According to the invention, the term “copper foil” includes copper or copper alloys, and may include copper foils containing zinc, brass, chrome, nickel, aluminum, stainless steel, iron, gold, silver, titanium and combinations and alloys thereof. The thickness of the copper foil may vary according to each particular application. In a preferred embodiment, the copper foil has a thickness of from about 5 &mgr;m to about 50 &mgr;m. It is well know to produce copper foils by electrodeposition processes. One preferred process includes electrodepositing copper from a solution of a copper salt onto a rotating metal drum. The side of the foil next to the drum is typically the smooth or shiny side, while the other side has a relatively rough surface, also known as the matte side. This drum is usually made of stainless steel or titanium which acts as a cathode and receives the copper as it is deposited from solution. An anode is generally constructed from a lead alloy. A cell voltage of about 5 to 10 volts is typically applied between the anode and the cathode to cause the copper to be deposited, while oxygen is evolved at the anode. This copper foil is then removed from the drum. Electroplated foil is available from Oak-Mitsui of Hoosick Falls, N.Y. Rolled copper is available from Olin Brass of East Alton, Ill.
The surfaces of the foil can be modified to enhance the performance of the embedded passive device. If a rougher surface is required to assist in adhesion of the embedded passive material to the foil or the subsequent adhesion of the printed circuit substrate to the foil, the foil may be pre-treated with a bond enhancing treatment known in the art, which may serve as an adhesion promoter for the foil. In this regard, a treatment of either nickel or copper nodules can be applied to either or both sides of the foil. One roughening technique such as by electrolytically depositing micro-nodules of a metal or alloy such as copper or nickel and increase adhesion to the foil. Such may be conducted according to U.S. Pat. Nos. 6,117,300; 5,679,230 or 3,857,681 which are incorporated herein by reference. The nodules may range in size from about 40 microinches to about 200 microinches, or more preferably from about 40 microinches to about 150 microinches.
The surface microstructure of the foil is measured by a profilometer, such as a Perthometer model M4P or S5P which is commercially available from Mahr Feinpruef Corporation of Cincinnati, Ohio. Topography measurements of the surface grain structure of peaks and valleys are made according to industry standard IPC-TM-650 Section 2.2.17 of the Institute for Interconnecting and Packaging Circuits of 2115 Sanders Road, Northbrook, Ill. 60062. In the measurement procedure, a measurement length Im over the sample surface is selected. Rz defined as the average maximum peak to valley height of five consecutive sampling lengths within the measurement length Im (where Io is Im/5). Rt is the maximum roughness depth and is the greatest perpendicular distance between the highest peak and the lowest valley within the measurement length Im. Rp is the maximum leveling depth and is the height of the highest peak within the measuring length Im. Ra, or average roughness, is defined as the arithmetic average value of all absolute distances of the roughness profile from the center line within the measuring length Im. The parameters of importance for this invention are Rz and Ra. The surface treatments carried out produce a surface structure having peaks and valleys, which produce roughness parameters wherein Ra ranges from about 1 to about 10 &mgr;m and Rz ranges from about 2 to about 10 &mgr;m.
In another embodiment of the invention, a smooth copper surface may be required. For example, capacitors require the dielectric spacing to be minimized. In order to prevent shorting of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nickel coated copper as electrodes for embedded passive devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nickel coated copper as electrodes for embedded passive devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nickel coated copper as electrodes for embedded passive devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3126715

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.