Nickel aluminide coating and coating systems formed therewith

Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S621000, C428S652000, C428S680000, C416S24100B, C416S24100B

Reexamination Certificate

active

06291084

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to coatings of the type used to protect components exposed to high temperature environments, such as the hostile thermal environment of a gas turbine engine. More particularly, this invention is directed to a predominantly beta (&bgr;) phase NiAl overlay coating that is alloyed to exhibit enhanced environmental properties, and as a result is useful as an environmental coating and as a bond coat for a thermal insulating ceramic layer.
BACKGROUND OF THE INVENTION
Higher operating temperatures for gas turbine engines are continuously sought in order to increase their efficiency. However, as operating temperatures increase, the high temperature durability of the components within the engine must correspondingly increase. Significant advances in high temperature capabilities have been achieved through the formulation of nickel and cobalt-base superalloys. Nonetheless, when used to form components of the turbine, combustor and augmentor sections of a gas turbine engine, such alloys alone are often susceptible to damage by oxidation and hot corrosion attack and may not retain adequate mechanical properties. For this reason, these components are often protected by an environmental and/or thermal-insulating coating, the latter of which is termed a thermal barrier coating (TBC) system.
Diffusion coatings, such as diffusion aluminides and particularly platinum aluminides (PtAl), and overlay coatings, particularly MCrAlY alloys (where M is iron, cobalt and/or nickel), have been widely employed as environmental coatings for gas turbine engine components. Ceramic materials such as zirconia (ZrO
2
) partially or fully stabilized by yttria (Y
2
O
3
), magnesia (MgO) or other oxides, are widely used as a topcoat of TBC systems used on gas turbine engine components. The ceramic layer is typically deposited by air plasma spraying (APS) or a physical vapor deposition (PVD) technique. TBC employed in the highest temperature regions of gas turbine engines is typically deposited by electron beam physical vapor deposition (EBPVD) techniques which yield a columnar grain structure that is able to expand and contract without causing damaging stresses that lead to spallation.
To be effective, thermal barrier coatings must have low thermal conductivity, strongly adhere to the article, and remain adherent throughout many heating and cooling cycles. The latter requirement is particularly demanding due to the different coefficients of thermal expansion between thermal barrier coating materials and superalloys typically used to form turbine engine components. Thermal barrier coating systems capable of satisfying the above requirements have generally required a bond coat, typically one or both of the above-noted diffusion aluminide and MCrAlY coatings. The aluminum content of a bond coat formed from these materials provides for the slow growth of a strong adherent continuous aluminum oxide layer (alumina scale) at elevated temperatures. This thermally grown oxide (TGO) protects the bond coat from oxidation and hot corrosion, and chemically bonds the ceramic layer to the bond coat. However, a thermal expansion mismatch exists between the metallic bond coat, alumina scale and ceramic layer, and peeling stresses generated by this mismatch gradually increase over time to the point where spallation can occur at the interface between the bond coat and alumina scale or the interface between the alumina scale and ceramic layer.
Furthermore, though bond coat materials are particularly alloyed to be oxidation-resistant, the surface oxidation and interdiffusion (with the substrate) that occurs over time at elevated temperatures gradually deplete aluminum from the bond coat. Eventually, the level of aluminum within the bond coat can become sufficiently depleted to prevent further slow growth of the protective alumina scale and to allow for the more rapid growth of nonprotective oxides, the result of which again is spallation of the ceramic layer. In addition to depletion of aluminum, the ability of the bond coat to form the desired alumina scale can be hampered by the interdiffusion of certain elements between the superalloy and bond coat, such as during formation of a diffusion aluminide coating and during high temperature exposure.
From the above, it is apparent that the service life of a TBC system is dependent on the bond coat used to anchor the thermal insulating ceramic layer. Consequently, considerable research has been directed toward improved bond coats for TBC systems, including efforts directed to the use of oxidation-resistant materials other than diffusion aluminide coatings and MCrAlY overlay coatings. One example is bond coats formed of an overlay coating (i.e., not a diffusion) of beta (&bgr;) phase nickel aluminide (NiAl) intermetallic, whose composition is about 50 atomic percent (about 30 weight percent) aluminum, the balance being nickel. In the past, gas turbine engine components formed of NiAl intermetallic have been proposed. For example, advanced NiAl intermetallic alloys are reported in commonly-assigned U.S. Pat. Nos. 5,116,438, 5,116,691, 5,215,831 and 5,516,380 as suitable for forming load-bearing gas turbine engine components. These patents are primarily concerned with alloying the NiAl intermetallic to improve high temperature mechanical strength and low temperature ductility, neither of which is of particular concern for TBC bond coats, since bond coats are deposited as sacrificial layers on the outer surfaces of components and do not contribute to the strength of the components. NiAl intermetallic has also been proposed as an environmental coating in U.S. Pat. No. 4,610,736 to Barrett et al., in which additions of about 0.05 to 0.25 weight percent zirconium were shown to improve the cyclic oxidation resistance of the intermetallic, though whether such a coating could be used as a bond coat for a TBC system was not reported or evident.
More recently, in commonly-assigned U.S. patent application Ser. No. 09/232,518, filed Jan. 19, 1999, to Darolia, a beta-phase nickel aluminide bond coat containing 0.2 up to about 0.5 atomic percent zirconium is reported to promote the adhesion of a ceramic TBC layer to the extent that the service life of the resulting TBC system is drastically increased. Darolia also teaches that minimizing the diffusion zone between a NiAl bond coat and its underlying substrate promotes the formation of an initial layer of essentially pure aluminum oxide, promotes the slow growth of the protective aluminum oxide layer during service, and reduces the formation of voluminous nonadherent oxides of substrate constituents that tend to diffuse into the bond coat, such as nickel, cobalt, chromium, titanium, tantalum, tungsten and molybdenum. As such, Darolia teaches that NiAl bond coats can perform extremely well as a bond coat for a TBC if properly alloyed and deposited to contain only NiAl intermetallic and zirconium. Notably, Darolia subscribes to the conventional wisdom that alloying additions of chromium, titanium and tantalum to a bond coat detrimentally encourage the growth of alumina scale, leading to reduced spallation life of a ceramic layer on the bond coat. Consequently, it is apparent that the alloying requirements of NiAl intermetallic intended as an environmental coating or TBC bond coat differ from that of NiAl intermetallic used to form load-bearing articles, such as those of previously-mentioned U.S. Pat. No. 5,516,380.
Even with the advancements of Darolia, there remains a considerable and continuous effort to further increase the service life of TBC systems by improving the spallation resistance of the thermal insulating layer.
BRIEF SUMMARY OF THE INVENTION
The present invention generally provides a protective overlay coating for articles used in hostile thermal environments, such as turbine, combustor and augmentor components of a gas turbine engine. The method is particularly directed to increasing the environmental resistance of a predominantly beta-phase NiAl overlay coating for use as an environmental coating

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nickel aluminide coating and coating systems formed therewith does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nickel aluminide coating and coating systems formed therewith, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nickel aluminide coating and coating systems formed therewith will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2471156

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.