Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
1993-05-11
2004-06-29
Romeo, David S. (Department: 1647)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S320100, C435S325000, C435S358000, C536S023100, C536S024100, C530S300000, C530S324000, C530S326000, C530S328000, C530S350000
Reexamination Certificate
active
06756211
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to factors which inhibit neutrophil activity, including inhibition of neutrophil activation and adhesion of neutrophils to vascular endothelial cells.
BACKGROUND AND INTRODUCTION TO THE INVENTION
Neutrophils are a class of white blood cells (leukocytes) that comprise an essential component of the host defense system against microbial invasion. In response to soluble inflammatory mediators released by cells at the site of injury, neutrophils migrate into tissue from the bloodstream by crossing the blood vessel wall. At the site of injury, activated neutrophils kill foreign cells by phagocytosis and by the release of cytotoxic compounds, such as oxidants, proteases and cytokines. Despite their importance in fighting infection, neutrophils themselves can promote tissue damage. During an abnormal inflammatory response, neutrophils can cause significant tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue. Alternatively, neutrophils that stick to the capillary wall or clump in venules may produce tissue damage by ischemia. Such abnormal inflammatory responses have been implicated in the pathogenesis of a variety of clinical disorders including adult respiratory distress syndrome (ARDS); ischemia-reperfusion injury following myocardial infarction, shock, stroke, and organ transplantation; acute and chronic allograft rejection; vasculitis; sepsis; rheumatoid arthritis; and inflammatory skin diseases (Harlan et al., 1990 Immunol. Rev. 114, 5).
Neutrophil adhesion at the site of inflammation involves at least two discrete cell-cell interactive events. Initially, vascular endothelium adjacent to inflamed tissue becomes sticky for neutrophils; neutrophils interact with the endothelium via low affinity adhesive mechanisms in a process known as “rolling”. In the second adhesive step, rolling neutrophils bind more tightly to vascular endothelial cells and migrate from the blood vessel into the tissue. Neutrophil rolling along affected vascular segments and other initial low affinity contacts between neutrophils and the endothelium are mediated by a group of monomeric, integral membrane glycoproteins termed selectins. All three of the s-electins so far identified, that is L-selectin (LECAM-1, LAM-1) present on the surface of neutrophils, E-selectin (endothelial leukocyte adhesion molecule-1; ELAM-1) present on endothelial cells and P-selectin (granule membrane protein-140, GMP-140; platelet activation-dependent granule-external membrane protein, PADGEM; CD62) expressed on endothelial cells, have been implicated in neutrophil adhesion to the vascular endothelium (Jutila et al., 1989 J. Immunol 143, 3318; Watson et al., 1991 Nature 349, 164; Mulligan et al., J. Clin. Invest. 88, 1396; Gundel et al., 1991 J. Clin. Invest. 88, 1407; Geng et al., 1990 Nature 343, 757; Patel et al., 1991 J. Cell Biol. 112, 749). The counter-receptor for E-selectin is reported to be the sialylated Lewis X antigen (sialyl-Lewis
x
) that is present on cell-surface glycoproteins (Phillips et al., 1990 Science 250, 1130; Walz et al., 1990 Science 250, 1132; Tiemeyer et al., 1991 Proc. Natl. Acad. Sci. (USA) 88, 1138; Lowe et al., 1990 Cell 63, 475). Receptors for the other selectins are also thought to be carbohydrate in nature but remain to be elucidated.
The more stable secondary contacts between neutrophils and endothelial cells are mediated by a class of cell adhesion molecules known as integrins. Integrins comprise a broad range of evolutionarily conserved heterodimeric transmembrane glycoprotein complexes that are present on virtually all cell types. Members of the leukocyte-specific CD18 (&bgr;
2
) family of integrins, which include CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1; Mo-1; CR3) have been reported to mediate neutrophil adhesion to the endothelium (reviewed in Larson and Springer, 1990 Immunol Rev. 114, 181). Endothelial cell counter-receptors for these integrins are the intercellular cell adhesion molecules ICAM-1 and ICAM-2 for CD11a/CD18 and ICAM-1 for CD11b/CD18, respectively (Rothlein et al., 1986 J. Immunol. 137, 1270; Staunton et al., 1988 Cell 52, 925; Staunton et al., 1989 Nature 339, 61). The ICAMs are monomeric transmembrane proteins that are members of the immunoglobulin superfamily.
The activation of endothelial cells and neutrophils represents an important component of neutrophil-mediated inflammation. Factors that induce cell activation are termed agonists. Endothelial cell agonists, which include small regulatory proteins such as tumor necrosis factor (TNF&agr;) and interleukin-1 (IL-1&agr;), are released by cells at the site of injury. Activation of endothelial cells results in the increased surface expression of ICAM-1 (Staunton et al., 1988 Cell 52, 925) and ELAM-1 (Bevilacqua et al., 1987 Proc. Natl. Acad. Sci. (USA) 84, 9238). Raised levels of expression of these adhesive molecules on the surface of activated endothelial cells leads to the observed increased adhesivity of neutrophils for the vascular endothelium near sites of injury.
Activation of the neutrophil results in profound changes to its physiological state, including shape change, ability to phagocytose foreign bodies and release of cytotoxic substances from intracellular granules. Moreover, activation greatly increases the affinity of adhesive contacts between neutrophils and the vascular endothelium, perhaps through a conformational change in the CD11b/CD18 integrin complex on the neutrophil surface (Vedder and Harlan, 1988 J. Clin. Invest. 81, 676; Buyon et al., 1988 J. Immunol. 140, 3156). Factors that have been reported to induce neutrophil activation include IL-1&agr;, GM-CSF, G-CSF, MIP-1, IL-8 (IL-8=interleukin-8, GM-CSF=granulocyte/monocyte-colony stimulating factor, G-CSF=granulocyte-colony stimulating factor), and TNF&agr;, the complement fragment C5a, the microbe-derived peptide formyl-Met-Leu-Phe and the lipid-like molecules leukotriene B4 (LTB
4
) and platelet activating factor (Fuortes and Nathan, 1992, in
Molecular Basis of Oxidative Damage by Leukocytes
Eds Jesaitis, A. J. and Dratz, E. A. (CRC Press) pp. 81-90). In addition, phorbol esters (e.g., phorbol 12-myristate 13-acetate; PMA) represent a potent class of synthetic lipid-like neutrophil agonists. With the exception of PMA, these agonists have been reported to activate neutrophils by binding receptors on their surface. Receptors that are occupied by agonist molecules initiate within the neutrophil a cascade of events that ultimately results in the physiological changes that accompany neutrophil activation. This process is known as signal transduction. The lipid-like PMA likely effects neutrophil activation by passing through the plasma membrane at the cell surface and directly interacting with intracellular components (i.e., protein kinase) of the signal transduction machinery.
There exist two general classes of compounds that have been reported to down regulate the function of neutrophils, and these compounds have been reported to mitigate inflammation. One group of anti-inflammatory compounds is said to function as inhibitors of neutrophil activation, and presumably adhesion, by acting on components of the signal transduction machinery. A second class of anti-inflammatory compounds is said to block neutrophil infiltration into inflammatory foci by acting as direct inhibitors of the adhesive receptors that mediate contact between neutrophils and the vascular endothelium.
Many of the anti-inflammatory compounds currently used as therapeutics, including prostaglandins, catecholamines, and a group of agents known as non-steroidal anti-inflammatory drugs (NSAIDs), are believed to fall into the first category (Showell and Williams, 1989, in
Immunopharmacology
, eds. Gilman, S. C. and Rogers, T. J. [Telford Press, NJ] pp 23-63). For example, the enhanced adhesiveness observed for TNFa-activated neutrophils has been associated with decreased levels of a mediator of signal transduction, cyclic AMP (cAMP; Nathan and Sanchez, 1990 JCB 111, 2171). Ex
Foster David L.
Moyle Matthew
Vlasuk George P.
Biggs Suzanne L.
Corvas International Inc.
Romeo David S.
LandOfFree
Neutropohil inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Neutropohil inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neutropohil inhibitors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328500