Neutralized perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluo

Chemistry: molecular biology and microbiology – Spore forming or isolating process

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424423, 435240243, 623 1, 623 11, 623 12, C12N 500, A61F 202, A61F 204, A61F 206

Patent

active

050772155

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

This invention relates to the use of a copolymer of perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluoride and a monomer as a surface for the attachment and growth of adherent animal cells. The invention has particular application to the manufacture and use of prosthetic vascular grafts, connective tissue replacements and soft tissue replacements that incorporate such a copolymer.


BACKGROUND ART

The design or selection of materials useful in vascular prostheses requires an understanding of the characteristics necessary for irreversible endothelialisation of a surface and for inhibition of undesirable platelet interactions. An approach to the development of vascular prostheses that has been taken has been guided by the object of circumventing the acute problems of platelet activation, adhesion and thrombogenesis. This approach involves designing a blood interface which disallows thrombogenesis by preventing platelet activation directly, and may be achieved either by the selective incorporation or adsorption of platelet binding inhibitors, such as serum albumin or heparin, or by providing a surface which directly repels or inactivates platelets electrostatically. However these modifications might also suppress the attachment and growth of endothelial cells on the luminal surface of the prosthesis. Grafts prepared using this approach may therefore be regarded as unhealed and a physiological and anatomical state comparable to the normal luminal structure is not achieved.
It is generally known that surfaces which support endothelial cell growth comparable to that seen on glow discharged polystyrene also tend to be thrombogenic. However it is also known that sulphonated polystyrenes have antithrombogenic activity which is reported to be a feature of the negative charge of sulphonate groups. The present invention has been developed by following this line of investigation.
In a recent study, McAuslan and Johnson [(1987) J. Biomedical Materials Research 21.921-935] showed that the hydroxyl rich surface of poly(hydroxyl ethyl methacrylate)(pHEMA) hydrogel can be converted from a non-cell adhesive to a highly cell adhesive state by either hydrolytic surface etching or by copolymerization with methacrylic acid. Thus cell adhesion appeared to correlate with the introduction of surface COOH groups although this alone was not a sufficient condition. This has raised the question of whether other negatively charged moieties would be just as effective at promoting cell attachment.
A fluorocarbon polymer with pendant sulphonic groups is the chemically inert, non-crosslinked cation-exchange resin known by the trade mark NAFION. NAFION is chemically identified as a copolymer of tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluoride. The mechanical and chemical stability of this perfluorosulphonate ionomer and its selective permeability to charged ions had made it useful for industrial electrochemical separating processes. It can be prepared as films or tubes and is hydrophilic, which is in contrast to polytetrafluoroethylene (PTFE, which is known by the trade mark TEFLON) or expanded PTFE (which is known by the trade mark GORE-TEX), a material which is in wide use as a vascular graft.
We have now found that any copolymer of perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluoride and a monomer, and particularly NAFION, may, when in a neutralised form, be used as a surface for the attachment and growth of adherent animal cells from different tissue sources, including endothelial cells. In this specification and claims, reference to being in a neutralised form means within one pH unit of pH 7.0.


DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide a material useful in vascular prostheses and other implantables having improved biocompatibility arising from enhanced endothelial cell attachment properties and anti-thrombogenicity which will substantially overcome the disadvantages of the prior art.
In accordance with one aspect of the present inven

REFERENCES:
patent: 4329434 (1982-05-01), Kimoto
patent: 4329435 (1982-05-01), Kimoto
patent: 4578079 (1986-03-01), Ruoslahti et al.
patent: 4883057 (1989-11-01), Broderick
Penner, et al., Ion Transporting Composite Membranes 1. Nafion-Impregnated Gore-Tex Journal of the Electrochemical Society, vol. 132, pp. 514-515, 1985.
Hynes Molecular Biology of Fibronectin. Annual Review of Cell Biology, vol. 1, pp. 67-90, 1985.
Adhesion of Cells to Polystyrene Surfaces, by A. S. G. Curtis et al., Departments of Cell Biology and Chemistry, University of Glasgow, Glagow G12 8QQ Scotlan, UK. the Journal of Cell Biology, vol. 97, Nov. 1983, pp. 1500-1506.
Attachment and growth of BHK cells and liver cells on polystyrene: Effect of surface groups introduced by treatment with chromic acid, H. G. Klemperer and P. Knox, Dept. of Biochemistry and Dept. of Cancer Studies, University of Birmingham Lab. Practice, vol. 26, No. 3.
Substrate Hydroxylation and Cell Adhesion, A. S. G. Curtis et al., J. Cell Sci. 86, 9-24 (1986) The Company of Biologist Ltd. Department of Cell Biology, University of Glasgow, Glasgow, UK.
Cellular interactions with synthetic polymer surfaces in culture M. J. Lydon et al.,. Unilever Research Laboratory, Colworth House, Shambrook, Bedfordshire, MK44 1LQ, UK, 1985 Butterwoth & Co. (publilshers) Ltd., Biomaterials 1985, vol. 6 Nov.
Coating Bacteriological Dishes With Fibronectin Permits Spreading and Growth of Human Diploid Fibroblasts by Frederick Grinnell and Jannet L. Marshall, Department of Cell Biology, University of Texas Health Science Center, Cell Bio. Intern. Reports. vol. 6, No. 11, 11/82.
Adhesion and Spreading of Cells on Charged Surfaces, by N. G. Maroudas, J. Theor., Biol. (1975) 49, pp. 417-424-Imperial Cancer Research Fund Laboratories, London England.
Sulphonated Polystyrene as an Optimal Substratum for the Adhesion and Spreading of Mesenchymal Cell in Monovalent and Divalent Saline Solutions by N. G. Maroudas; -Cell Phsiol 90: 511-520, Mar., 1977.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Neutralized perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluo does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Neutralized perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neutralized perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluo will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1509841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.