Neurotoxin implant

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S422000, C424S484000, C424S486000, C424S236100, C424S247100, C514S964000

Reexamination Certificate

active

06306423

ABSTRACT:

BACKGROUND
The present invention relates to a controlled release drug delivery system. In particular, the present invention relates to a controlled release neurotoxin delivery system.
A controlled release system can deliver a drug in vivo at a predetermined rate over a specific time period. Generally, release rates are determined by the design of the system, and can be largely independent of environmental conditions such as pH. Controlled release systems which can deliver a drug over a period of several years are known. Contrarily, sustained release systems typically deliver drug in 24 hours or less and environmental factors can influence the release rate. Thus, the release rate of a drug from an implanted controlled release system (an “implant”) is a function of the physiochemical properties of the carrier implant material and of the drug itself. Typically, the implant is made of an inert material which elicits little or no host response.
A controlled release system can be comprised of a drug with a biological activity incorporated into a carrier. The carrier can be a polymer or a bioceramic material. The controlled release system can be injected, inserted or implanted into a selected location of a patient's body and reside therein for a prolonged period during which the drug is released by the implant in a manner and at a concentration which provides a desired therapeutic efficacy.
Polymeric materials can release drugs due to diffusion, chemical reaction or solvent activation, as well as upon influence by magnetic, ultrasound or temperature change factors. Diffusion can be from a reservoir or matrix. Chemical control can be due to polymer degradation or cleavage of the drug from the polymer. Solvent activation can involve swelling of the polymer or an osmotic effect. See e.g.
Science
249;1527-1533:1990.
A membrane or reservoir implant depends upon the diffusion of a bioactive agent across a polymer membrane. A matrix implant is comprised of a polymeric matrix in which the bioactive agent is uniformly distributed. Swelling-controlled release systems are usually based on hydrophilic, glassy polymers which undergo swelling in the presence of biological fluids or in the presence of certain environmental stimuli.
Preferably, the implant material used is substantially non-toxic, non-carcinogenic, and non-immunogenic. Suitable implant materials include polymers, such as poly(2-hydroxy ethyl methacrylate) (p-HEMA), poly(N-vinyl pyrrolidone) (p-NVP)+, poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA), polydimethyl siloxanes (PDMS), ethylene-vinyl acetate (EVAC) copolymers, polyvinylpyrrolidone/methylacrylate copolymers, polymethylmethacrylate (PMMA), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), polyanhydrides, poly(ortho esters), collagen and cellulosic derivatives and bioceramics, such as hydroxyapatite (HPA), tricalcium phosphate (TCP), and aliminocalcium phosphate (ALCAP). Lactic acid, glycolic acid and collagen can be used to make biodegradable implants.
Controlled release systems comprising a polymer for prolonged delivery of a therapeutic drug are known. For example, a subdermal reservoir implant comprised of a nonbiodegradable polymer can be used to release a contraceptive steroid, such as progestin, in amounts of 25-30 mg/day for up to sixty months (i.e. the Norplant® implant). Additionally, Dextran (molecular weight about 2 million) has been released from implant polymers.
An implant material can be biodegradable or bioerodible. An advantage of a bioerodible implant is that is does not need to be removed from the patient. A bioerodible implant can be based upon either a membrane or matrix release of the bioactive substance. Biodegradable microspheres prepared from PLA-PGA are known for subcutaneous or intramuscular administration.
A degradable implant preferably retains its structural integrity throughout its duration of controlled release so that it can be removed if removal is desired or warranted. After the incorporated drug falls below a therapeutic level, a biodegradable implant can degrade completely without retaining any drug which can be released at low levels over a further period. Subdermal implants and injectable microspheres made of degradable materials, such as lactic acid-glycolic acid copolymers, polycaprolactones and cholesterol, for steroid delivery, are known.
Protein Implants
Controlled release systems for large macromolecules, such as proteins are known. Thus, biocompatible, polymeric pellets which incorporate a high molecular weight protein have been implanted and shown to exhibit continuous release of the protein for periods exceeding 100 days. Various labile, high molecular weight enzymes (such as alkaline phosphatase, molecular weight 88 kD and catalase, molecular weight 250 kD) have been incorporated into biocompatible, polymeric implants with long term, continuous release characteristics. Generally an increase in the polymer concentration in the casting solution decreases the initial rate at which protein is released from the implant.
Nature
263; 797-800:1976.
Additionally, albumin can be released from an EVAc implant and polylysine can be released from collagen based microspheres. Mallapragada S. K. et al, at page 431 of chapter 27 in Von Recum, A. F.
Handbook of Biomaterials Evaluation,
second edition, Taylor & Francis (1999). Additionally, the release of tetanus toxoid from microspheres has been studied. Ibid at 432. Sintered EVAc copolymer inserted subcutaneously has been shown to release insulin over a period of 100 days. Ibid at 433.
Furthermore, it is known to encapsulate a protein, such as human growth hormone (hGH) (molecular weight about 26 kD), within a polymeric matrix which when implanted permits the human growth hormone to be released in vivo over a period of about a week. U.S. Pat. No. 5,667,808.
A controlled release system (i.e. an “implant”) can exhibit a high initial burst of protein release, followed by minimal release thereafter. Unfortunately, due to the high concentration of protein within a controlled release matrix, the protein molecules tend to aggregate and form denatured, immunogenic concentrations of protein.
Pulsatile Release Implants
Hydrogels have been used to construct single pulse and multiple pulse drug delivery implants. A single pulse implant can be osmotically controlled or melting controlled. Doelker E., Cellulose Derivatives, Adv Polym Sci 107; 199-265:1993. It is known that multiple pulses of certain substances from an implant can be achieved in response to an environmental change in a parameter such as temperature (
Mater Res Soc Symp Proc,
331 ;211-216:1994;
J. Contr Rel
15;141-152:1991), pH (
Mater Res Soc Symp Proc,
331;199-204:1994), ionic strength (
React Polym,
25;127-137:1995), magnetic fields (
J. Biomed Mater Res,
21;1367-1373:1987) or ultrasound.
Unfortunately, a subcutaneous implantable drug pellet made of a nonbiodegradable polymer has the drawback of requiring both surgical implantation and removal. Use of a biocompatible, bioerodible implant can overcome the evident deficiencies of nonbiodegradable implants. A biodegradable implant can release a drug over a long period of time with simultaneous or subsequent degradation of the polymer within the tissue into constituents, thereby avoiding any need to remove the implant. See e.g.
Drug Development and Industrial Pharmacy
24(12);1129-1138:1998.
A degradable polymer can be a surface eroding polymer, as opposed to a polymer which displays bulk or homogenous. A surface eroding polymer degrades only from its exterior surface, and drug release is therefore proportional to the polymer erosion rate. A suitable such polymer can be a polyanhydride.
Botulinum Toxin
The anaerobic, gram positive bacterium Clostridium botulinum produces a potent polypeptide neurotoxin, botulinum toxin, which causes a neuroparalytic illness in humans and animals referred to as botulism. The spores of Clostridium botulinum are found in soil and can grow in improperly sterilized and sealed food containers of home based canneries, which are the caus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Neurotoxin implant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Neurotoxin implant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neurotoxin implant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2616558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.