Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – With indicator or control of power plant
Reexamination Certificate
2002-03-28
2004-02-03
Wolfe, Willis R. (Department: 3747)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
With indicator or control of power plant
C701S109000, C701S106000, C123S575000, C123S525000, C123S480000
Reexamination Certificate
active
06687597
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a method and system for providing multipoint gaseous fuel injection to an internal combustion engine for use in various vehicles and engine-powered machines and more particularly, to a method and system for electrically controlling an engine operating on gasoline and alternative fuels.
BACKGROUND INFORMATION
Alternative fuels such as natural gas, hydrogen, propane, and ethanol are starting to enter the market in the transportation sector. This is due to a number of factors, including lower price, reduced tailpipe emissions, and the security of the fuel supply in comparison to gasoline and diesel fuel. Furthermore, natural gas and propane reduce greenhouse gas (GHG) emissions by about 25% compared to gasoline in automotive applications, while ethanol can reduce GHG emissions by about 30% to 65% depending on the process used to produce the ethanol. Similarly, hydrogen fuelled vehicles can reduce GHG emissions by about 60% to 80%.
Providing systems and methods to enable efficient and productive use of alternative fuels is required.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention there is provided a method of modifying a fuel injection signal having a pulse width, the fuel injection signal being provided by a controller managing a fuel powered apparatus receiving gasoline and an alternative fuel for electrical control of a gasoline operated injector and an alternative-fuel operated injector, the controller having information on temperature, exhaust gas oxygen (EGO) content, air-fuel ratio, fuel trims and a control system type, the method comprising: (a) receiving the pulse width of the fuel injection signal; (b) receiving the information on the temperature, the EGO content, and the fuel trims; (c) modifying the pulse width of the fuel injection signal based on the received information, the modified pulse width controlling alternative fuel supplied by the alternative fuel injector to the fuel powered apparatus; (d) determining whether an error criterion is met based on measured information of the fuel powered apparatus operating on the alternative fuel and desired response information; and (e) repeating the steps (c) and (d) when the error criterion is not met.
In accordance with another aspect of the present invention there is provided a system for modifying a fuel injection signal having a pulse width, the fuel injection signal being provided by a controller managing a fuel powered apparatus receiving gasoline and an alternative fuel for electrical control of a gasoline operated injector and an alternative-fuel operated injector, the controller having information on temperature, exhaust gas oxygen (EGO) content, air-fuel ratio, fuel trims and a control system type, the system comprising: a mechanism constructed and adapted to obtain the pulse width of the fuel injection signal; a mechanism constructed and adapted to receive the information on the temperature, EGO content and the fuel trims; a mechanism constructed and adapted to modify the pulse width of the fuel injection signal based on the received information, the modified pulse width controlling the alternative fuel supplied by the alternative fuel injector to the fuel powered apparatus; and a mechanism constructed and adapted to determine whether an error criterion is met based on measured information of the fuel powered apparatus operating on the alternative fuel and desired response information.
In accordance with another aspect of the present invention there is provided a system for controlling fuel injection of an internal combustion engine of a vehicle, the system comprising: sensors applied to the vehicle for sensing parameters relating to the vehicle and the fuel injection; a controller for providing a fuel injection signal having a pulse width based on the sensed parameters; a fuel injector for injecting a first fuel in a first mode and a second fuel in a second mode into the engine; a comparator for comparing the sensed parameters with reference parameters to provide an error signal; a pulse width modifier for changing the pulse width in response to the error signal; and a switch for providing the fuel injection signal to the fuel injector and the pulse width modifier in the first and second modes, where: in the first mode, the fuel injector injects the first fuel into the engine in response to the pulse width of the fuel injection signal, in the second mode, the fuel injector injects the second fuel into the engine in response to a modified pulse width of a modified fuel injection signal, the modified pulse width being one changed by the pulse width modifier, the parameters sensed by the sensors in the second mode being provided to the comparator, the comparator providing the error signal in comparing the sensed parameters to the reference parameters.
In accordance with another aspect of the present invention there is provided a vehicle having an internal combustion engine comprising first and second groups of fuel injectors, the first group of injectors being gasoline injectors, the second group of injectors being alternative fuel injectors; the vehicle comprising: sensing means for providing information on air for use in the engine, engine temperature, and exhaust gas oxygen content; control means for providing a fuel control signal having a pulse width in response to the information provided by the sensing means; means for selecting a path of the fuel control signal; first fuel injection means for controlling the gasoline injection by the gasoline injectors in response to the pulse width of the fuel control signal, while the path of the fuel control signal is selected to the first fuel injection means; pulse modification means for modifying the pulse width of the fuel control signal when the path of the fuel control signal is selected to the pulse modification means; and second fuel injection means for controlling the alternative fuel injection by the alternative fuel injectors in response to a modified pulse width of the fuel control signal.
In accordance with another aspect of the present invention there is provided a computer program product comprising a computer useable medium having computer logic stored therein for modifying a fuel injection signal having a pulse width, the fuel injection signal being provided by a controller managing a fuel powered apparatus receiving gasoline and an alternative fuel for electrical control of a gasoline operated injector and an alternative-fuel operated injector, the controller having information on temperature, exhaust gas oxygen (EGO) content, air-fuel ratio, fuel trims and a control system type, the computer program product including: a mechanism constructed and adapted to obtain the pulse width of the fuel injection signal; a mechanism constructed and adapted to receive the information on the temperature, EGO content and the fuel trims; a mechanism constructed and adapted to modify the pulse width of the fuel injection signal based on the received information, the modified pulse width controlling the alternative fuel supplied by the alternative fuel injector to the fuel powered apparatus; and a mechanism constructed and adapted to determine whether an error criterion is met based on measured information of the fuel powered apparatus operating on the alternative fuel and desired response information.
In accordance with another aspect of the present invention there is provided a computer-readable media tangibly embodying a program of instructions executable by a computer to perform a method of modifying a fuel injection signal having a pulse width, the fuel injection signal being provided by a controller managing a fuel powered apparatus receiving gasoline and an alternative fuel for electrical control of a gasoline operated injector and an alternative-fuel operated injector, the controller having information on temperature, exhaust gas oxygen (EGO) content, air-fuel ratio and fuel trims, the method comprising: (a) receiving the pulse width of the fuel injection signal; (b) receiving the
Gnanam Gnanaprakash
Hill Sheldon George
Song Yimin
Sulatisky Michael Theodore
Young Kimberley Allan
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Saskatchewan Research Council
Wolfe Willis R.
LandOfFree
Neural control system and method for alternatively fueled... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Neural control system and method for alternatively fueled..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Neural control system and method for alternatively fueled... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289340