Optical communications – Transmitter – Including compensation
Reexamination Certificate
2001-04-11
2004-07-20
Pascal, Leslie (Department: 2633)
Optical communications
Transmitter
Including compensation
C398S015000, C398S165000
Reexamination Certificate
active
06766117
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a network system for laser processing, in particular for industrial production installations, comprising at least a first and a second laser device, each of which has a laser radiation source, at least one output for the laser radiation, a shutter switch disposed between the respective output and the laser radiation source and a laser controller, and also comprising at least one workstation with at least one laser processing head.
Network systems of this type are known from the prior art. However, with these there is the problem of ensuring that the laser radiation from the laser radiation source is only sent to the workstation when the latter has been made safe.
In the case of the known network systems of this type, it is occasionally necessary to change the laser radiation supply to the laser processing head, that is to say the laser processing head initially receives laser radiation from one laser device, but in the case of maintenance work on this laser device or a technical problem on this laser device it is necessary to change to the other laser device, the change from one laser device to the other being carried out manually, since it does not occur very often.
However, this manual change from one laser device to the other entails considerable safety risks.
It is therefore an object of the invention to form a network system of the type described at the beginning in such a way that it can be operated safely.
SUMMARY OF THE INVENTION
According to the invention, this object is achieved in the case of a network system of the type described at the beginning by a first light guide, which is led from the output of the first laser device to an optical connection element associated with the workstation, being provided, by a first communication connection element, which is connected to the laser controller of the first laser device via a first communication line, being locally associated with the first optical connection element, by a second light guide, which is led from the output of the second laser device to a second optical connection element associated with the workstation, being provided, which a second communication connection element, which is connected to the laser controller of the second laser device via a second communication line, is locally fed to the second optical connection element, by the laser processing head being capable of being connected to the first or second optical connection element by means of a mating optical connection part, by a safety circuit, which is capable of being connected to the first or second communication connection element via a mating communication connection part, being associated with the workstation, by a mechanical blocking device, which allows only the mating optical connection part and the mating communication connection part to be connected to the first or second optical connection element and the respectively associated first or second communication connection element, being provided and by each laser controller blocking a closing of the shutter switch of the corresponding laser device if the safety circuit is not connected to the respective communication connection element, and releasing the shutter switch only if the safety circuit of the workstation is connected to the communication connection element connected to the respective laser controller and is not itself emitting a stop signal.
A closing of the shutter switch is understood for the purposes of this invention as meaning that a light path from the laser radiation source to the corresponding output is allowed, so that the laser radiation is passed to the output, while an opening of the shutter switch means that the light path is interrupted, that is to say the laser radiation does not reach the output.
It is consequently to be regarded as the advantage of the solution according to the invention that, in spite of the fact that two optical connection elements of two different laser devices are associated with the workstation, it is not possible to connect the mating optical connection part of the laser processing head to the optical connection element of the one laser device while the mating communication connection part is connected to the communication connection element of the other laser, so that the other laser, to the optical connection element of which the mating optical connection part is not connected, monitors the safety functions of the workstation, in particular the safety circuit of the same, and consequently this laser controller releases its shutter switch as long as the safety circuit does not emit a stop signal, so that, in principle, it could be possible for this laser device to send laser radiation to the optical connection element although the mating connection part is not connected to it.
The converse case is also avoided, that is that the laser device sends laser radiation to that workstation to the optical connection element of which the mating optical connection part is connected but without the laser controller monitoring the safety functions.
In principle, the blocking device may be formed in a wide variety of ways.
For example, the blocking device may be effective between the communication connection element and the optical connection element and be formed for example in such a way that the mating communication connection part can only be connected to the communication connection element if the mating optical connection part is already connected to the associated optical connection element, or vice versa.
However, a solution which is particularly simple mechanically provides that the blocking device is formed as a mechanical connecting element of a specific length between the mating optical connection part and the mating communication connection part and that the first optical connection element and the second communication connection element and also the second optical connection element and the first communication connection element are at a distance from one another which is greater than the length of the connecting element.
Consequently, the connecting element ensures that, whenever for example the mating optical connection part has been brought into connection with the first or second optical connection element, the mating communication connection part can only be brought into connection with the associated communication connection element, since the other communication connection element is so far away that the connecting element no longer allows it to be inserted.
No details have previously been specified regarding the form of the safety circuit. The safety circuit is preferably formed in such a way that it always emits a stop signal when a working area safety device of the workstation is activated.
Such activation of a working area safety device only takes place if, for example, an access to the workstation is open.
A particularly advantageous variant of the solution according to the invention provides that a processing controller is associated with the workstation, that the processing controller is connected to the mating communication connection part and receives information for the identification of the laser device via the communication connection element connected to the mating communication connection part.
This solution has the great advantage that the connection of the mating communication connection part to the corresponding communication connection element simultaneously enables the processing controller to detect which laser device is supplying the laser radiation arriving at the optical connection element and consequently enables it to select and activate the corresponding laser device.
This solution consequently makes it possible to eliminate the possibility of the processing controller actuating a laser device which is not at all capable of supplying laser radiation for the communication connection element connected to the mating communication connection part on account of erroneous existing information or erroneously entered information.
It is even more advantageous if t
Pascal Leslie
Tran Dzung
TRUMPF Laser GmbH + Co. KG
LandOfFree
Network system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Network system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3186506