Network based multiple sensor and control device with...

Communications: electrical – Condition responsive indicating system – With particular system function

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S517000, C340S525000, C340S565000, C340S309160, C340S693500, C340S691400, C340S315000

Reexamination Certificate

active

06798341

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of electrical sensors and more particularly to a network based multi-function sensor and control device suitable for sensing motion, temperature, humidity and ambient light, setting and controlling temperature and control relay and ballast loads and which includes blinder devices for reducing nuisance tripping of the device.
BACKGROUND OF THE INVENTION
Today, automation systems are being installed in more and more buildings, including both new construction and in structures that are being rebuilt. The incentives for putting automation systems into a building are numerous. High on the list are reduced operating costs, more efficient use of energy, simplified control of building systems, ease of maintenance and of effecting changes to the systems. Facility managers would prefer to install systems that can interoperate amongst each other. Interoperability is defined by different products, devices and systems for different tasks and developed by different manufacturers, being able to be linked together to form flexible, functional control networks.
An example of a typical automation system includes lighting controls, HVAC systems, security systems, fire alarm systems and motor drives all possibly provided by different manufacturers. It is desirable if these separate disparate systems can communicate and operate with each other.
Prior art automation systems generally comprised closed proprietary equipment supplied by a single manufacturer. With this type of proprietary system, the installation, servicing and future modifications of the component devices in the system were restricted to a single manufacturer's product offering and technical capability. In addition, it was very difficult or impossible to integrate new technology developed by other manufacturers. If technology from other manufactures could be integrated it was usually too costly to consider.
Thus, it is desirable to create an open control system whereby individual sensors, processors and other components share information among one another. A few of the benefits of using an open system include reduced energy costs, increased number of design options for the facility manager, lower design and installation costs since the need for customized hardware and software is greatly reduced and since star configuration point to point wiring is replaced by shared media and lastly, system startup is quicker and simpler.
In addition, expansion and modification of the system in the future is greatly simplified. New products can be introduced without requiring major system redesign or reprogramming.
An integral part of any automation control system are the sensors and transducers used to gather data on one or more physical parameters such as temperature and motion. It would be desirable if a plurality of sensor functions could be placed in a single device, fit in a standard single wall box opening and be able to communicate with one or more control units, i.e., processing nodes, on the control network.
The number and types of sensors in this device could be many including multiple, dual or singular occupancy and security sensing via means including passive infrared, ultrasonic, RF, audio or sound or active infrared. In addition, other multiple or singular transducers may be employed such as temperature sensor, relative humidity sensor, ambient light sensor, CO sensor, smoke sensor, security sensor, air flow sensors, switches, etc.
The utility of such a multifunction sensor can best be described by an example. In order to minimize the number of unique devices that are installed in a room, it is desirable to have a sensor device reliably perform as many functions as possible as this reduces the wiring costs as well as the number of devices required to be installed on the walls of the room. Additionally, from an aesthetic point of view, architects are under increasing demand by their clients to reduce the number of unique sensor nodes in any given room.
Further, it is also desirable to have these transducers or sensors communicate with a microprocessor or microcontroller that can be used to enhance the application of the transducer. This may be accomplished by providing the necessary A/D functions, including sensitivity and range adjustments of the transducer functions, and also by enabling the sensed information to be communicated over a bus or other media using a suitable protocol.
Further, calibration,either in the field or the factory could be employed to generate either a relative or real absolute temperature reading. Further, the control of any HVAC equipment could be performed either locally at the sensor node or at a remote location. Also, the sensor devices could be used to control the lights in and outside the room and building, control the HVAC controls in and outside the room and building, send signals to or control the fire alarm and security alarm systems, etc.
It is also desirable to enable the device to communicate using any of the standard protocols already in use such as Echelon LonWorks, CEBus, X10, BACNet, CAN, etc. Some examples of the media include twisted pair, power line carrier, optical fiber, RF, coaxial, etc.
The device thus preferably can transmit data or commands, receive data or commands, activate and switch local or remote loads or control devices, use and/or generate real time or relative readings, be calibrated externally in an automatic self adjusting way, calibrated externally or via an electronic communications link. The ability to communicate over a network allows the user or network manager the flexibility to set light levels, temperature and humidity levels in the building to desired levels either for maximizing the energy savings or for the occupants comfort or convenience or for some combination of the two.
Additionally, the device preferably is able to minimize or eliminate effects from its internal circuitry that may interfere with the temperature reading of the temperature sensor. Also, the device preferably has the ability to detect if there are adverse air flows emanating from the mounting hole in the wall or other surface which could cause erroneous temperature and humidity measurements.
It is desirable if the device is mounted in a location that is exposed to the air in the environment of the room or area being monitored. The motion detector transducer and sensor circuit is preferably mounted in a manner such that it is not exposed to (1) the air flow from the environment being monitored and (2) the air flow which may be created when the device is mounted in or on a hole in the wall. Further, the hole in the wall is often created when the device is mounted on a wall in a home or office building. The hole may function to create a chimney effect given the right conditions. It is thus desirable to mount the temperature sensor in a way which offers some shielding or insulation from direct exposure to heating or air ducts as well as any other undesirable heating or cooling sources such as direct sunlight, fans, HVAC ducts, etc.
SUMMARY OF THE INVENTION
The present invention is a multifunction sensor and thermostat device that provides various transducer functions and the ability to control temperature. In particular, the device comprises a means for performing temperature sensing and control, humidity sensing, ambient light sensing, motion detection, switching, relay control, dimming functions and a means to put the device in an on, off or auto mode. The device can optionally employ a cool/off/heat and fan on/auto switch that places the heating and cooling equipment in the appropriate state. Alternatively, it can perform these functions over the network via software control. Additionally, the device can also interface with master or slave thermostats and can turn on and off all types of fans (including ceiling and tabletop fans), heating units and cooling units. The device can also be linked to the on/off ‘kill’ switch commonly used for boilers and hot water heaters. This ensures that the heating unit stays off in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Network based multiple sensor and control device with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Network based multiple sensor and control device with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network based multiple sensor and control device with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197452

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.