Network architecture and method of providing link protection...

Multiplex communications – Fault recovery – Bypass an inoperative channel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S216000

Reexamination Certificate

active

06813241

ABSTRACT:

TECHNICAL FIELD
The present invention relates in general to data traffic networks and, in particular, to a configuration of splitters, switches and data link selection devices within a data network to accomplish switching from a working data link to a protection data link and/or protection channel following the detection of a failure or fault in the network.
BACKGROUND OF THE INVENTION
The use of public data networks as data transport mechanisms has proliferated and become common place. For example, network topologies using the Internet Protocol (IP) are now widely used as a means of communicating digital data and voice signals over long distances. An example of an IP-based network is the Internet or World Wide Web.
Typically, data traffic within a data network is transmitted from one location to another utilizing a series of routers, servers, gateways and other devices that are adapted to receive and transmit the data traffic over a series of data links or signaling channels. The routers or routing elements, in particular, utilize a routing algorithm in connection with a routing table to store possible destinations, the distance to such destinations and the route path used to reach them in order to direct data traffic within the network. A plurality of communications links made up of copper pair wiring, fiber optic cabling, or other transmission medium provide the signaling pathways that connect the routers. The distance between the routers is usually measured in “hops” or “nodes,” which refer to the number of routers that the data traffic encounters along a particular path. This distance can also be measured in other meaningful quantities.
The routers periodically communicate routing information among themselves propagating updated routing data which can be stored in the routing tables and utilized by the routing algorithms of the network. Each router and its routing table can by dynamically updated to indicate the shortest distance between nodes of the network. In this way, a router can examine the IP packets to be transmitted and, using the routing table, make a routing decision based on information regarding the distance between hop destinations and the overall load of the network. Other network topologies such as ATM switches, for example, use other forms of data routing schemes and other types of signaling protocols.
In general, the capacity of the network is defined by the number of data traffic links available for transmission of data traffic as well as the bandwidth of such links between any two nodes in the network. The bandwidth of the link can be defined in terms of the number of transmitted bids of traffic data per second, such as 1, 10, or 100 Mbits/s. Typically, a network is divided into an array of subnetworks which are associated with specified regions defining the network service area. The concentration of routers and other networking devices can be great in regions where network use is heavy or large amounts of data traffic is flowing. At the very minimum, a specified subregion of the network will include at least two routers or nodes designated as primary data traffic agents for incoming and outgoing data traffic within the subregion.
A factor that can significantly affect the performance of the network and overall network efficiency is the failure of the components and/or the data transmission links used to carry the data traffic. Such failures can be caused by a variety of factors, including cut lines, repairs, severe weather, and upgrades to the network, among others. In optical networks that offer higher transmission speeds (10 Gbit/s, for example) the failure of an optical link can lead to enormous loss of data.
While in most instances, a router is provided with the ability to redirect data traffic along an alternative data link once the primary or working data link has suffered a failure, the fastest possible recovery and reversion to the working data link is desired after detection of the failures. Additionally, while the data traffic can be redirected to ensure receipt at its intended destination node, the use of such alternative paths can increase congestion and decrease overall network performance. With the growing demands for increased speeds and improved data trafficking services, the ability to quickly restore primary transmission links after equipment failure is at a premium.
As such, it would be advantageous to provide an efficient way to overcome the effects of failures within the network and provide fast restoration of transmission links once a failure has been detected.
SUMMARY OF THE INVENTION
The present invention provides a configuration of line splitting and line selection devices that are adapted to provide fast and accurate recovery from equipment failures, such as failures in the primary optical working data link, the line terminating equipment and data routing devices. In the event a failure occurs over the working data link, the flow of data traffic in the network is maintained along a protection data link or a protection channel, as is appropriate. Link protection can be unidirectional or bidirectional to provide a protection mechanism both in the receive and transmit signaling channels. A protection data link and protection channel are provided and utilized to route data traffic in the event the working data link or a router's working data port suffers a failure. Once the failure is repaired, data traffic flow is restored along the working data link or using the working data port to ensure the most efficient use of network resources.
According to one embodiment of the invention, disclosed is a network architecture providing link protection between nodes in a data traffic network. The data traffic network comprises a working data link as a communications pathway between first and second nodes of the network. The network also includes first and second routing elements that are predisposed and configured about the nodes and adapted to communicate data traffic over the working data link. A line or signal splitter is interspersed between the first routing element and the working data link about the first node.
The network also includes a link selector interspersed between the second routing element and the working data link about the second node. A protection data link forms a signal pathway between the signal splitter and the link selector with the signal splitter and link selector configured to switch the flow of data traffic from the working data link to the protection data link following the detection of a failure.
A short reach transmitter and short reach receiver are used and configured to provide communications between the first routing element and the signal splitter. The signal splitter and link selector are predisposed at the first and second nodes, respectively, and communicable coupled to each other through the working data link or protection data link, as determined by the failure status of the working data link. A long reach transmitter and a long reach receiver are used to communicate signals over the working data link or protection data link, as is appropriate.
In one embodiment, the link selector includes an optical line monitor configured to determine the transmission qualities of the working data link and the protection data link. The primary advantage of the monitor is its use to determine when to revert to the working data link after recovery from a failure.
Also disclosed is a network architecture suitable for use in a data traffic network that includes a plurality of nodes and a plurality of data links coupling the nodes. The network architecture includes a working data link that forms a signal pathway between an origination node and a designation node within the network. A protection data link is likewise provided and forms a second signal pathway between the same two nodes. A pair of routers are provided and predisposed about the nodes, respectively, and configured to provide for the transmission and reception of data traffic with the network. In one embodiment, the routers include both working and pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Network architecture and method of providing link protection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Network architecture and method of providing link protection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network architecture and method of providing link protection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334178

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.