Needleless syringe using supersonic gas flow for particle...

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S068000

Utility Patent

active

06168587

ABSTRACT:

Previous work has demonstrated the feasibility of using dense carrier particles for the genetic transformation of plant cells. In that biolistic method, dense micro projectiles, made for example of tungsten or gold, are coated with genetic material and fired into target cells. As disclosed in WO-A-92/04439, the micro projectiles were fired by means of an apparatus comprising an elongate tubular device, a pressurizable gas reservoir connected to one end of the device, means between the device ends for holding or introducing particles to be propelled, and a membrane which closes the passage through the tubular device until ruptured on application of a predetermined pressure of gas from the reservoir, whereupon the particles are propelled by the gas flow from the tubular device. As disclosed in the earlier specification, the particles could initially be immobilised, e.g. electrostatically, on or upstream of a rupturable diaphragm, which is ruptured when the gas flow commences, and which may be the same as the rupturable membrane which ruptures to initiate the gas flow. Alternatively it was said that the particles could be injected into the gas stream through a hollow needle.
It is now appreciated that, surprisingly, the earlier technique can be modified to provide a non-invasive drug delivery system by means of a needleless syringe which fires light drug-containing particles in controlled doses into the intact skin.
According to a broad aspect of the invention, a needleless syringe comprises an elongate tubular nozzle, a rupturable membrane initially closing the passage through the nozzle adjacent to the upstream end of the nozzle, particles of a therapeutic agent, particularly a powdered therapeutic agent, located adjacent to the membrane, and energising means for applying to the upstream side of the membrane a gaseous pressure sufficient to burst the membrane and produce through the nozzle a supersonic gas flow in which the particles are entrained.
The syringe may be used for routine delivery of drugs, such as insulin for the treatment of diabetes, and could be of use in mass immunisation programs, or for the delivery of slow-release drugs such as pain killers and contraceptives. The syringe may also be used for the delivery of genetic material into living skin cells, with the long term aim of providing genetic therapy for the stable treatment of diseases such as haemophilia or skin melanoma. The syringe could also be used to deliver genetic material to skin, muscle, blood, lymph and with minor surgery, to organ surfaces.
A delivery system utilising the new syringe reduces the changes of the spread of communicable and auto-immune diseases, which are currently transmitted amongst other means by the re-use of needles. Drug delivery by liquid jet causes skin damage and bleeding and offers no advance over needles in preventing the spread of blood-borne diseases. Thus, the main advantages which flow from the invention include no needle and less pain; no risk of infection; delivery of drugs in natural, solid form; quicker and safer to use than liquid drug, by syringe and needle; and no sharps to dispose of.
Preliminary experiments conform a theoretical model and establish the efficacy of the new technique, particularly the transdermal injection of powdered drugs. The theoretical model assumes that the skin behaves much like water as a resisting medium. Thus, at low values of Reynolds number the drag follows Stokes law, but a higher values of Reynolds number the drag coefficient is constant. Evidence for this form of drag behaviour on a smooth sphere in a uniform medium, like water, is given in “Mechanics of Fluids” by B S Massey (Van Nostrand). The calculations show that adequate penetration, for example to between 100 and 500 &mgr;m beneath the skin is possible using powdered drug particles which are not so large that skin cells will be damaged, utilizing gas velocities e.g. Mach 1-8, preferably Mach 1-3, which are comparatively easily obtainable upon bursting of a rupturable membrane. The penetration depends upon the particle size, that is to say the nominal particle diameter assuming that the particles are roughly spherical, the particle density, the initial velocity upon impacting the skin, and the density and kinematic viscosity of the skin. Different penetration distances will be required depending upon the tissue, e.g. epidermis or muscle, to which the particles are to be delivered for optimum treatment, and the parameters determining penetration will be selected accordingly.
It is a characteristic of the invention that depth of penetration can be closely controlled, thus providing specific administration to a desired locus. Thus, for example, penetration may be chosen at less than 1 mm for an intra-dermally active agent, 1-2 mm for an active agent sub-cutaneously, and 10 mm or more for an agent active when administered intra-muscularly. The gent itself will be chosen accordingly. Examples of agents that can be used are viruses or proteins for immunisation, analgesics such as ibuprofen, hormones such as human growth hormone, and drugs such as insulin and calcitonin. The agent can be administered without any carrier, diluent or other density-enhancing agent. In certain circumstances, e.g. in order to provide a particle of a certain size containing a highly-active drug, some carrier may be present, but the amount will usually be much less than in a conventional pharmaceutical composition, e.g. less than 75% and often less than 50% for volume of the particles. Insulin and calcitonin, for example, will usually be delivered sub-cutaneously. HGH (human growth hormone) may be administered sub-cutaneously or, less frequently, intra-muscularly. The immunogens hepatitis A, meningitis and BCG may be administered intra-muscularly, sub-cutaneously and intra-dermally.
Thus in a first example, insulin particles with a nominal diameter of 10 &mgr;were injected at an initial velocity of 750 m/sec into the skin. Assuming that the insulin particles have a density close to that of the skin, i.e. approximately 1, and that the kinematic viscosity of the skin is assumed to match that of water at 10
−6
m
2
/sec, the penetration depth before the particles come to rest within the sin is about 200 &mgr;m. To obtain greater penetration, the particle size can be increased to 20 &mgr;m and the initial velocity to 1,500 m/sec, in which case the penetration depth rises to about 480 &mgr;m.
In a second example of the use of the new technique, not for transdermal injection, but for the genetic transformation of cells, for example the injection of DNA-coated tungsten carrier particles into maize cells, a comparable penetration into the tissue would require a reduction in the size of the particles to allow for their increased density. Thus if such coated particles with a nominal diameter of 1 &mgr;m, and a density of the order of 20 are injected into maize cells at a velocity of 500 m/sec, the penetration is about 200 &mgr;m.
In general, the new injection technique can be carried out with particles having a size of between 0.1 and 250 &mgr;m, preferably, for transdermal powdered drug injection, of between 1 and 50 and most preferably between 10 and 20 &mgr;m. The particles will usually have a density in the range between 0.1 and 25 g/cm
3
, but for transdermal drug injection, preferably in the range between 0.5 and 2.0 g/cm
3
, most preferably substantially 1.0 g/cm
3
, Injection velocities may be between 200 and 2,500 (or even up to 3,000 or more) m/sec, but for transdermal powdered drug injection, preferably between 500 and 1,500 and most preferably between 750 and 1,000 m/sec.
The powdered therapeutic agent will normally be ground and sieved to a precise diameter. Alternatively the particles could be tiny spherical shells of for example, up to 100 &mgr;m diameter, in which solid or liquid drugs are encapsulated. If the encapsulating shell has a controlled permeability, this may provide an additional means of providing a slow drug release rate after delivery. A substantially inert carrier may have to b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Needleless syringe using supersonic gas flow for particle... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Needleless syringe using supersonic gas flow for particle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Needleless syringe using supersonic gas flow for particle... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553221

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.