Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2001-07-11
2003-12-30
Kennedy, Sharon (Department: 3762)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S256000, C128S912000
Reexamination Certificate
active
06669681
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to needleless fluid connection devices and more specifically to a device for repeatedly establishing a sealed connection to a conduit or a container for medical applications.
BACKGROUND OF THE INVENTION
One very prevalent form of health care therapy is infusion or intravenous (“I.V.”) therapy whereby fluids possessing desired medication or other characteristics are infused into a patient over varying lengths of time. To practice this infusion therapy frequently a connection needs to be made between components for the transfer of fluid between the two components, along a fluid passageway and eventually to a patient. As an example, administration sets are widely used to administer liquids parenterally to a patient and other medical devices are connected to the administration set to provide the proper administration.
One widely used connector for making a connection between medical devices to establish a fluid passageway is a luer connection assembly. In the luer connection assembly, a male luer tip component or fitting having a frustoconical shape is inserted into a female luer component or fitting having a frustoconical shaped receiving cavity and opposing conical surfaces come into contact to form a sealed friction fit.
Until the connection is made, the passageway through each of the luer fittings and into the lumen of a component attached to the luer fitting is open to the environment. This lumen and the passageway through the luer connectors form a portion of the fluid passageway and must be sterile prior to use and then sealed against microbial ingress during use. Thus, these connection assemblies and the associated components are packaged in sterile packaging and the connections are typically made just prior to establishing fluid communication with a patient's venous system.
There are two general types of luer connection assemblies. One type is generally referred to as the luer slip where the connection is maintained by the friction fit between the male luer tip and female luer component. The other type is generally referred to as a luer lock connection whereby the male luer tip is encircled by an annular flange having a threaded internal surface. The female component includes a corresponding thread formed about the outer surface. Engaging the threaded flange to the threaded outside surface establishes the connection between the male luer tip and female component while preventing accidental disconnects.
To insure a universal luer connections among components provided by a multitude of manufacturers, luer connection assemblies are manufactured to comply with universal standards. Very important sets of standards such as ANSI and ISO standards. These standards includes standard dimensions for male slip and luer lock assemblies. Among these dimensional standards are standards which define the spacing or clearance between the annular locking flange and the male luer tip. Thus any female connection device configured to establish a connection to a standard male luer lock must be able to engage the luer tip and locking flange within this clearance or spacing.
Other standards in the ISO standards include several performance requirements for luer connections. One such requirement is that after a luer lock type connection is made, to prevent inadvertent disconnection, the luer connection should resist an axial removal force of 8 pounds and unscrewing torque less than 2.8 in/oz without disconnection. Luer connections should also hold a seal against 45 psi after a connection torque of 16 in/oz has been applied. In standard luer connections this resistance and sealing is supplied by the friction between the opposing conical surfaces.
Once a component of I.V. therapy is placed in fluid communication with the body, the fluid passageway should be sealed from the environment to prevent contamination and this passageway should also be sealed so as to not allow any leakage of bodily fluids into the environment However, most therapies require periodic access to the fluid passageway. Because the portion of the fluid passageway through a female luer connection component is open to the environment, these components will not form a sealed connection to the fluid passageway after the fluid passageway is placed in fluid communication with the body.
In one prevalent example of intravenous therapy, fluid containing a drug in solution is injected into a primary flow of fluid from an I.V. solution container through an administration set to a catheter extending within a vein. The drug containing fluid may be injected from a syringe, secondary medication set or the like, into the set where it mixes with the flowing fluid. In another prevalent example, fluid is injected directly into or withdrawn from a catheter extending within the body. In addition the catheters are flushed periodically to maintain patency by the injection of small amounts of saline or heparin.
As can be appreciated, it is highly desirable to maintain catheters and administration sets in service as long as possible without compromising the safety of the patient. Replacement of catheters and sets is time consuming and expensive. Therefore over the period of time of use of a set or catheter there may be many connections and disconnects. For example, there may be over 100 connections and disconnects to a connection site on a catheter or set before the catheter or set is replaced. In addition a connection may be made and that connection maintained for an extended period of time before disconnection. For example a connection may be made for up to seven days of “indwell” and yet the connection should still be capable of accepting intermediate and subsequent connections and disconnects without allowing leakage to the environment.
Another highly desirable attribute of a connector is the ability for such a connector to seal against pressurized fluid found within a set or for the connector to possess a certain leak pressure in excess of a desired pressure. For example it is desirable for a connector to have a leak pressure which is in excess of 20 p.s.i. for a short period of time such as when a bolus administration of drug is injected into a set and a leak pressure in excess of 6 p.s.i. of continuous pressure during infusion of medication.
In addition, a connector may be exposed to negative pressure particularly when such connector is located upstream of an inlet of an intravenous pump. Failure to prevent aspiration through a connector when the connector is exposed to negative pressure may lead to an aspiration of air and/or microbes into the fluid passageway.
Depending on the application, many other features may be desirable. Dead spaces within any connector which cannot be “flushed” should be minimized or eliminated as they may form an environment for microbial growth. Also, priming volume for the connector should be minimized.
Because intravenous therapy is practiced on a worldwide basis and millions of connection sites are used every year and the costs of components used in such therapy are a factor in the cost of therapy, any desired connector should be capable of being manufactured at high speeds and low cost. Generally the lower the number of parts making up a component, the lower the number of molds and high speed assembly devices both of which generally translate to lower capital expenditures and therefore lower costs.
On the other hand, whatever the connector configuration, it is highly desirable that the connector be capable of low defect manufacture. Even a small number of failure is generally unacceptable when a single failure may put a patient or health care provider at risk.
Moreover, it is also highly desirable that any surfaces around an inlet into a connector be able to be swabbed or otherwise disinfected. Typically unbroken or smooth surfaces facilitate swabbing and other disinfecting techniques.
As mentioned previously, although luer connectors are widely found in the medical environment such connections are generally not acceptable when many of the above des
Bindokas Algirdas J.
Dudar Thomas E.
Finley Michael J.
Jepson Steven C.
Montanez Rodrigo A.
Baxter International Inc.
Buonaiuto Mark J.
Kennedy Sharon
Kowalik Francis C.
Nichols Jeffrey C.
LandOfFree
Needleless connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Needleless connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Needleless connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3129523