Near-field optical inspection apparatus

Radiant energy – Photocells; circuits and apparatus – Optical or pre-photocell system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S306000

Reexamination Certificate

active

06507017

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of high resolution scanning techniques and relates to an apparatus for near-field optical inspection of articles, particularly useful for inspecting a substantially large surface area with very high spatial resolution.
BACKGROUND OF THE INVENTION
There is a great variety of scanning systems having a common goal of increasing the system's resolution. It is known that the resolution depends on the diameter of a light beam striking the object, namely the less the diameter of the beam, the higher the resolution of the system. Near-field applications such as optical data storage, inspection, microscopy, etc., solve the resolution problem by generating a point-like light source, having dimensions smaller than the light wavelength. This is typically achieved either by defining small apertures on opaque screens, or, alternatively, by passing the light through point-like tips of sub-wavelength dimensions. The tips (constituting point-like light sources) are located at very close proximity of the object, in order to provide high optical resolution of the scanning system.
One example of a near-field optical microscope that utilizes a point-like tip and allows for inspecting a sample with substantially nano-scale resolution is disclosed in U.S. Pat. No. 4,947,034. A light beam illuminates the tip and a portion of light striking the tip scatters and forms local evanescent fields from the very end region of the tip to the sample surface, which is in proximity to the tip. The evanescent fields very close to the tip interact with the surface atoms of the sample. The optical properties of the sample's surface are measured in the following manner. First and second dither motions of different frequencies are applied to the tip relative to the sample (or vice versa) in directions, respectively, normal and parallel to the plane defined by the surface of the sample. Then, light scattered from the end of the tip and the sample is detected. In order to measure the entire surface, the sample is supported for movement in the X and Y directions beneath the stationary tip. The motion of the sample relative to the tip is controlled by X- and Y-piezoelectric drives, while the oscillation of the tip in Z-direction is controlled by Z-piezoelectric drive.
Another example of an apparatus for near-field optical microscopy is disclosed in U.S. Pat. No. 5,018,865. A photon scanning tunneling microscope is developed using a phenomenon of sample-modulated tunneling of photons in a near field to produce information about the sample. The evanescent near-field is produced by utilizing the effect of total internal reflection of a light beam incident on an interface between the materials of different refraction indices, when the incident beam lies in the medium of higher index. The intensity of this near field increases perpendicular to and towards the surface of the sample and has substantially constant intensity in a plane substantially parallel to the surface. To this end, the sample is placed within the near field and the presence of that sample changes the intensity distribution within the near-field, which is probed by an optical fiber probe tip. Photons from the incident beam tunnel through the region between the tip and the sample and can be collected by a suitable detection system. The intensity of the near field is measured adjacent to the sample, the measurement producing an image corresponding to the measured area of the sample. A feedback circuit is employed to regulate the intensity of the signal by varying the tip to sample distance, preventing thereby the tip from contacting the sample.
U.S. Pat. No. 5,508,805 discloses an optical scanning type tunneling microscope utilizing an optical probe. According to this technique, reference light is provided in addition to light projected to a sample, and an effect of interference between the reference light and light picked up from an optical probe is utilized to obtain phase information of light about a region on the sample having very small dimensions (smaller than a wavelength of emitted light). The optical probe is formed with a tip-like projection on its surface facing the sample. The tip serves for picking up or extracting evanescent waves, which are generated on the surface of a glass substrate supporting the sample and around the sample, wherein the generation of these evanescent waves is caused by the incidence of measuring light upon the glass substrate. This optical probe comprises three fused single-mode optical fibers, the first fiber serving for transferring the reference light into the second fiber optically coupled with the first fiber, and the third fiber serving for detecting a relative position of this fiber relative to the surface of the sample. The tip-like projection is formed on the distal end of the second fiber, which thereby conveys both the transferred reference light and the collected, measured light.
European Publication No. 0507628 discloses a near field scanning optical microscope aimed at improving the resolution of the microscope by utilizing a light source emitting light in a pulse-like manner, an optical probe (near field optical means), and a detector operable in synchronism with the pulsed light from the light source. The optical microscope may also utilize an STM (or AFM) that detects data on the surface relief of the sample. The output of the STM can be used for maintaining a constant distance between the optical probe and the surface of the sample. To this end, however, the STM and the optical probe are kept at a known distance from each other, and the output of the STM indicative of the surface relief is recorded to be used for positioning the optical probe when reaching a specific location on the sample (the recorded recess or projection).
Most of the inspection systems of the kind specified, especially those used for inspecting patterned articles, are aimed at covering a large surface area (hundred square centimeters in a few minutes). The term “patterned article” signifies an article formed with regions (features) having different optical properties in respect of incident radiation. The use of a plurality of nano-probes (tips) seems to be the simplest solution of achieving both goals, namely increasing the resolution and measured area. Unfortunately, this approach does not ensure reproducible results because it scales the cost linearly with the number of probes, wherein each such nano-probe has its own characteristics. This requires a very complicated image processing technique, if any, for successfully mapping the surface area scanned by the entire probes.
U.S. Pat. No. 5,633,972 discloses an aperture-based imaging fiber for generating a plurality of subwavelength light energy beams concurrently to be used for near field viewing. The use of such a fiber for illuminating a specimen is aimed at reducing image acquisition time.
SUMMARY OF THE INVENTION
There is accordingly need in the art to overcome the disadvantages of the conventional techniques by providing a novel apparatus for near-field optical inspection.
It is a major object of the present invention to provide such an apparatus that enables to obtain simultaneously high-resolution image from a large area.
It is a further object of the present invention to provide such an apparatus that allows for combining the principles of optical and scanning tunneling microscopy for successfully inspecting articles.
There is thus provided according to the present invention an apparatus for optical inspection of an article utilizing near-field illumination, the apparatus comprising:
(a) a light source unit generating incident light for illuminating the surface of the article;
(b) a detector unit for sensing light signals and providing data representative thereof;
(c) a fiber bundle for directing said incident light onto a substantially large surface area of the article and collecting light returned from the illuminated surface area; and
(d) a control means for adjusting the position of the fiber bundle rela

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Near-field optical inspection apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Near-field optical inspection apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Near-field optical inspection apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3070978

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.