NBR gels in butyl rubber compounds

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S204000, C525S213000, C525S214000, C525S232000, C525S230000, C525S240000

Reexamination Certificate

active

06620886

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to rubber mixtures and rubber vulcanizates, produced therefrom, based on uncrosslinked butyl rubber and on acrylonitrile-containing rubber particles (so-called rubber gels, gels or microgels). The rubber mixtures according to the present invention are suitable for the production of rubber vulcanizates having low gas permeability and acceptable mechanical properties, the mixtures exhibiting good processability.
BACKGROUND OF THE INVENTION
The vulcanizates produced from the rubber mixtures according to the present invention additionally have a low density, which has an advantageous effect on the weight of the molded rubber bodies produced from the vulcanizates, such as, for example, tire tubes, inner linings and gas-impermeable protective equipment, such as ABC protective clothing.
It is known that conventional fillers such as carbon black or silica in rubber mixtures can be replaced quantitatively or partially by rubber gels. Because of the low density of rubber gels (&rgr;<1 g/cm
3
), the corresponding vulcanizates have a lower weight than mixtures filled with carbon black (&rgr;<1.8 g/cm
3
) or with silica (&rgr;<2.1 g/cm
3
). In addition, when polybutadiene-based rubber gels are used (BR gels), high rebound resilience is found both at room temperature and at 70° C. Such vulcanizates can be used for the production of low-damping rubber articles, especially low-damping tire components. When SBR-based rubber gels are used, the corresponding vulcanizates are found to have low rebound resilience at room temperature and high rebound resilience at 70° C. Corresponding vulcanizates are suitable, for example, for tire treads having an advantageous wet-skid behavior/rolling resistance relation.
Reference is made in this connection, for example, to U.S. Pat. Nos. 5,124,408 and 5,395,891, DE-A 197 01 488.7, DE-A 199 29 347.3, DE-A 199 39 865.8, DE-A 199 42 620.1.
The use of NBR gels in mixtures of double-bond-containing rubbers is also known (DE-A 19701487.9). The patent applications cited above do not teach the use of rubber gels, especially of NBR gels in admixture with butyl rubber, which are suitable for the production of vulcanizates having low gas permeability, good processability and low weight.
The gas permeability coefficients of various vulcanized rubbers, and especially the low gas permeability of butyl rubbers, are known (gas permeability coefficients according to DIN 53536, see Handbuch für die Gummiindustrie, Bayer AG, 1991, p. 720). Because of their low gas permeability, butyl rubber and the halogenated (chlorinated and brominated) butyl rubbers are used in the production of rubber articles, such as, for example, tire tubes, inner linings as well as ABC protective equipment. The effect of the various compound constituents on the gas permeability of the vulcanized articles is also known (Handbuch für die Gummiindustrie, Bayer AG, 1991, p. 207-230). Compromises have to be made in order to meet various target values. One such compromise is that, in order to improve the viscosity of the mixture, it is necessary to use oils, which increase the gas permeability.
Mixtures based on butyl rubber have hitherto been filled with the conventional high-density fillers, such as carbon black or silica, the gas permeability of the vulcanizates falling as the amount of filler increases. Polymeric fillers, such as, for example, rubber gels, have hitherto not been used, possibly because of the prejudice that polymeric fillers increase the gas permeability.
SUMMARY OF THE INVENTION
The technical object was, therefore, to find measures permitting the production of rubber articles having low gas permeability, low weight and good processability of the compounds while having acceptable mechanical properties.
It has been found that this aim is achieved with rubber mixtures that contain uncrosslinked butyl rubbers and nitrile-containing rubber gels.
Accordingly, the present invention provides rubber mixtures comprising uncrosslinked butyl rubbers (A) and crosslinked, nitrile-containing rubber particles (B), the amount of component (B) in the mixture, based on 100 parts by weight (phr) of the rubber component (A), being from 1 to 150 parts by weight.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides rubber mixtures comprising uncrosslinked butyl rubbers (A) and crosslinked, nitrile-containing rubber particles (B), the amount of component (B) in the mixture, based on 100 parts by weight (phr) of the rubber component (A), being from 1 to 150 parts by weight, preferably from 5 to 100 parts by weight.
Uncrosslinked butyl rubbers (A) are to be understood as being butyl rubber (IIR), brominated butyl rubber (BIIR) and chlorinated butyl rubber (CIIR). Butyl rubbers and halogenated butyl rubbers are described in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 23 (1993) p. 288 ff and p. 314 ff.
Butyl rubber IIR is a copolymer of isobutylene with dienes such as isoprene, cyclopentadiene, pentadiene, butadiene and divinylbenzene, having a diene content of approximately from 0.5 to 10 mol. %. The preferred diene component in the butyl rubber is isoprene. Halogenated butyl rubber is obtained by chlorination (CIIR) or by bromination (BIIR) of butyl rubber and has a halogen content of approximately from 0.5 to 10 mol. %. Halobutyl rubbers are also to be understood as being terpolymers which are obtained by halogenation of isobutene/isoprene/divinylbenzene terpolymers having a divinylbenzene content of approximately from 0.5 to 5 mol. %, as well as halogenated isobutylene/p-methylstyrene copolymers having p-methylstyrene contents of approximately from 0.5 to 10 mol. %.
The halogenated and the unhalogenated butyl rubbers may be used individually or in a mixture with one another, the mixing ratio depending on the particular intended use of the mixtures.
Nitrile-containing rubber particles (B) are to be understood as being NBR gels as described, for example, in DE-A 19701487.9. NBR gels are usually composed of the monomers acrylonitrile, methacrylonitrile, butadiene, styrene, divinylbenzene, vinylpyridine, 2-chlorobutadiene, 2,3-dichlorobutadiene, as well as bisacrylates or bismethacrylates, such as ethylene glycol dimethacrylate and butanediol dimethacrylate, as well as a carboxyl-group-containing monomer, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Preference is given to nitrile-containing gels that contain, in addition to the above-mentioned monomers, contents of acrylonitrile or methacrylonitrile in amounts of approximately from 5 to 80 wt. %. They include NBR gels based on butadiene/acrylonitrile copolymers (NBR) having acrylonitrile contents of from 15 to 60 wt. %, as well as the corresponding carboxylated gels (XNBR gels), which additionally contain carboxyl-group-containing monomers in amounts of approximately from 0.5 to 15 wt. %.
The rubber particles to be used according to the present invention usually have particle diameters of from 5 to 1000 nm, preferably from 10 to 600 nm (data relating to diameters are according to DIN 53 206). Because they are crosslinked, they are insoluble and are swellable in suitable solvents, for example, toluene. The swelling indices of the rubber particles (QI) in toluene are approximately from 1 to 15, preferably from 1 to 10. The swelling index is calculated from the weight of the solvent-containing gel (after centrifugation at 20,000 rpm) and the weight of the dry gel, where QI=wet weight of the gel/dry weight of the gel. The gel content of the rubber particles according to the present invention is usually from 80 to 100 wt. %, preferably from 90 to 100 wt. %.
The rubber mixtures according to the present invention may contain further known rubber auxiliary substances and fillers. Especially suitable fillers for the production of the rubber mixtures or vulcanizates according to the present invention are, for example:
carbon blacks. The carbon blacks to be used have been prepared by the flame carbon black, furnace or gas carbon black pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

NBR gels in butyl rubber compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with NBR gels in butyl rubber compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and NBR gels in butyl rubber compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3098090

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.