Navigation system

Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06748325

ABSTRACT:

BACKGROUND OF INVENTION
The invention relates to navigation system and more particularly to that of airplanes, space shuttles, gliders, and all other types of carriers.
U.S. Pat. No. 5,566,073 introduces a pilot aid using synthetic reality consists of a way to determine the aircraft's position and attitude such as by the global positioning system (GPS), a digital data base containing three-dimensional polygon data for terrain and manmade structures, a computer, and a display. According to this prior art, the computer uses the aircraft's position and attitude to look up the terrain and manmade structure data in the data base and by using standard computer graphics methods creates a projected three-dimensional scene on a cockpit display. This presents the pilot with a synthesized view of the world regardless of the actual visibility. A second embodiment uses a head-mounted display with a head position sensor to provide the pilot with a synthesized view of the world that responds to where he or she is looking and which is not blocked by the cockpit or other aircraft structures. A third embodiment allows the pilot to preview the route ahead or to replay previous flights.
U.S. Pat. No. 5,574,648 introduces an improved airport control/management system for controlling and managing the surface and airborne movement of vehicular and aircraft within a defined and selected airport space envelope of an airport, the traffic, comprising apparatus for establishing a precise 3-dimensional digital map of the selected airport space envelope, the map containing GNSS positioning system reference points, a computer with a monitor screen for receiving and displaying the 3-dimensional map, transmit and receive radio equipment located on at least one vehicle/aircraft in the airport space envelope to generate and transmit continuous GNSS-based location reports a receiver associated with the computer to receive the reports from the vehicle/aircraft, programming associated with the computer and using the reports to superimpose 3-dimensional image corresponding to a path of the vehicle/aircraft onto the 3-dimensional map, apparatus associated with the 3-dimensional map for generating airport control and management signals as a function of the vehicle/aircraft path and computer aided design programming for manipulation of the 3-dimensional map and the image of the vehicle/aircraft and the path to a desired apparent line of observation, to control the traffic in the airport, the improvement comprising: the layering of the airport map creating a layered airport map having at least one layer, the layering permitting thereby sorting and tracking of each of the vehicle/aircraft, each of the layers selected from the group determined by function consisting of air traffic control phase of flight, notams, forbidden zone identification, airline and airport operations. The invention may also include systems and apparatus for identifying the type of vehicle and the 3-dimensional orientation of same.
U.S. Pat. No. 5,867,804 introduces a method and system supporting seamless 3-dimensional operations in a multi-dimensional environment using orbiting satellite compatible coordinate references and databases. According to this prior art, the system includes a control and management element and an aircraft/surface vehicle element. The two elements utilize a common worldwide coordinate reference frame and a common time reference for its operation. Precise collision detection, navigation and 3-dimensional situational awareness functions are performed using precise vector processing algorithms in combination compatible databases. Seamless air and ground operations are supported in such a fashion that the overall processing mathematics are directly applicable anywhere around the globe, only the specific databases need change for any given site. No regional distance scaling corrections or discontinuity compensations are required from site to site anywhere around the globe. Such a system greatly simplifies the operation of airports and other 4-dimensional environments. The simplicity of this system provides high availability and reduced system exposure to single point failures, while providing superior performance for air traffic controllers and aircraft/surface vehicle operators in the 3-dimensional space envelope.
U.S. Pat. No. 5,870,101 introduces an image synthesizing system is provided which can output a high-quality image in real time through the texture mapping without preventing the hardware from being increased in speed and reduced in scale. According to this prior art, a 3-D image is formed by a game space processing unit (
13
) and image supply unit (
10
) to perform a 3-D computation. At a processor unit (
30
), coordinates for each dot in a polygon and the corresponding texture coordinates are determined. A field buffer unit (
40
) stores the texture coordinates at an address specified by the coordinates for each dot. A texture data storage unit (
42
) has stored a rendering data. The texture coordinates are read out from the field buffer unit (
40
) and then used to read out the rendering data from the texture coordinate storage unit (
42
) to synthesize and output a pseudo 3-D image. By thus storing the texture coordinates in the field buffer unit (
40
), the subsampling/interpolation and the like may be carried out.
U.S. Pat. No. 5,904,724 introduces a method and apparatus that allows a remote aircraft to be controlled by a remotely located pilot who is presented with a synthesized three-dimensional projected view representing the environment around the remote aircraft. According to this prior art, a remote aircraft transmits its three-dimensional position and orientation to a remote pilot station. The remote pilot station applies this information to a digital database containing a three dimensional description of the environment around the remote aircraft to present the remote pilot with a three dimensional projected view of this environment. The remote pilot reacts to this view and interacts with the pilot controls, whose signals are transmitted back to the remote aircraft. In addition, the system compensates for the communications delay between the remote aircraft and the remote pilot station by controlling the sensitivity of the pilot controls.
U.S. Pat. No. 5,920,321 introduces an FMS with a three dimensional representation of the flight plan is disclosed. According to this prior art, the view is adjustable via a joystick or other similar controller and is capable numerous varied views, including both a two dimensional lateral view and a two dimensional elevation view. Software is used to effect the changing views.
U.S. Pat. No. 5,963,167 introduces an improved analyzing system based on GIPSY-OASIS II software package developed at the Jet Propulsion Laboratory for Global Positioning System, general satellite tracking, orbit determination and trajectory studies. According to this prior art, new features and functions include yaw compensation, precise satellite positioning by high-rate GPS clocks, enhanced data filtering and smoothing, a new user interface for controlling orientation of a satellite and its components, and no-fiducial approach to global geodesy. The present invention allows a fully automatic operation and delivery of validated daily solutions for orbits, clocks, station locations and others with no human intervention. A 3D GPS orbit accuracy of 15 cm and the daily repeatability of the 3D global geocentric station location in better than 1 cm have been achieved.
U.S. Pat. No. 5,983,161 introduces GPS satellite (
4
) ranging signals (
6
) received (
32
) on comm
1
, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (
8
) from a fixed known earth base station (
10
) received (
34
) on comm
2
, at one of a plurality of vehicles/aircraft/automobiles (
2
) are computer processed (
36
) to continuously determine the one's kinematic tracking position on a pathway (
14
) with centimeter accuracy. According to this prior art, GPS-based p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Navigation system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Navigation system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Navigation system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304716

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.