Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements
Reexamination Certificate
1999-09-07
2003-06-03
Nguyen, Cao (Kevin) (Department: 2173)
Computer graphics processing and selective visual display system
Display driving control circuitry
Controlling the condition of display elements
C345S215000
Reexamination Certificate
active
06573916
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to navigation within virtually rendered graphical environments. More particularly, the present invention relates to use of separate physical identifier tags that store preset or user determined navigational information to assist in navigation through 3D environments.
BACKGROUND AND SUMMARY OF THE INVENTION
Interactive navigation by users of digitally represented data spaces of N dimensions can be difficult due to the complexity of choices, awkward user interfaces, mismatched navigational input devices, or limitations in user memory or skill. For example, a user attempting to interactively comprehend and navigate through a multidimensional digital data set can become easily confused without predefined anchor points that mark known starting points, waypoints, or end points. Such anchor points may include simple time points (e.g. for navigation of audio data); centering on a preferred coordinate axis from a predefined viewpoint (e.g. for navigation of static two dimensional data displays); object centered movable viewpoint (e.g. for “flyby” tracking of rendered three dimensional objects); or viewing of predetermined two dimensional slices of high dimension (e.g. four or more) phase spaces.
The present invention facilitates creation and/or utilization of such navigational anchors in interactive digital environments with the aid of physically distinct electronic tags. Such a system for N-space navigation of digital data sets includes an electronic tag having a digitally or optically readable identifier, an electronic tag reader configured to read the identifier of the electronic tag, and a computing system connected to the electronic tag reader to provide digital navigation services of N-space data sets in response to reading the unique identifier of each electronic tag.
In operation, the digitally readable identifier of the electronic tag can be premarked with suitable graphical, symbolic, or textual indicia and pre-associated with a predetermined digital navigation service. In addition, the tag can be shape or texturally coded for ease of recognition. For example, an electronic tag shaped as a cube or a rectangular solid with identifiable texturing can be color coded or marked with text (e.g. “Start Here”, “Yesterday's Work”) to simplify association of a user with a desired navigational anchor. Alternatively, an electronic tag can be color coded or marked with text by a user to aid in remembering an interactive association of the electronic tag with a defined digital navigation anchor or service.
In certain embodiments, electronic tag and tag reader systems can be based on temporary direct connection between a tag and a computing system (e.g. a magnetic card strip and card reader, or a small integrated circuit in a “smart card” with associated reader). However, to improve ease of use, in preferred systems the electronic tag is read by the electronic tag reader through a wireless infrared or radiofrequency connection. Because of low cost, use of radiofrequency electronic tags having a semiconductor memory for data storage, processing logic, and a small antenna for broadcasting data, all embedded in rugged epoxy, thermoplastic, or other suitable plastic containers, is preferred. Data storage capacity for such radiofrequency electronic tags typically ranges from a few bits to many kilobits, with 64 bits being typical. Tags can include read only memory (ROM), electrically programmable or erasable (EPROM and EEPROM), or even flash memory. An electronic tag can be powered by a long lasting small battery, photovoltaic power, thermal converter, inductive power converter that relies on externally applied electromagnetic energy, or any other suitable power supply.
In operation, at least one electronic identification tag is affixed to each physical item that is associated with digital navigation services. These tags can be small radio frequency transponders comprised of an integrated circuit, containing a unique user accessible 39-bit identification number. A small coil inductively powers the tag, and an antenna is used to broadcast the identification number. In certain embodiments, the antenna can be separate from the coil, or alternatively, a dual-use inductive power coil/antenna coil can be used. In such preferred inductive based tags, no battery or other on-board power source is required, with energy being transferred from the inductive coil to the electronic tag.
A tag reader that includes transmitter and receiver components is affixed to a computational device. The tag reader momentarily energizes the tag through its coil until it has sufficient power for transient transmission of its identification number. The communication between tag and tag reader only occurs when both are proximate, with an actual distance varying based on size of the antenna attached to the tag and to the transmitter, from a distance of a few inches to that of several feet. Once the identification number (transmitted serially) is received, the tag reader passes this on to the computer system as an ASCII string, via a serial RS-232 output or some other suitable connection, while simultaneously providing user feedback to confirm reading of the electronic tag. User feedback can be visual (e.g. blinking or turning on an LED status light, text based or iconic display presentations), auditory (e.g. an audible buzz or beep), tactile (e.g. a button being raised or a perceptible structure rotation), or combinations of the foregoing.
Upon receipt of the identification number, the computing system interprets the identification input string, determines the current application navigational context, and provides appropriate digital services. For example, an ASCII database that maps identification numbers to one or more presaved navigational viewpoints in a rendered three dimensional data workspace can be used. One common action is a {program, navigational viewpoint} pair that invokes the identified program at an associated navigational viewpoint. If the received navigational viewpoint has not been previously registered, i.e. associated with an action in the ASCII database, the user can be prompted to enter associated parameters via a dialog box. Alternatively, in certain preferred embodiments users navigate to the desired location, move a previously unregistered tag past a reader, and allow electronic tag data to be automatically set to the displayed location.
As those skilled in the art will appreciate, each identification number or sensed data value that is read (sensed) by the tag can be labeled as a “command”, with a particular digital service or attribute being associated with each command. Although the wide variety of easily distinguishable commands (e.g. identification numbers) would alone provide a powerful user interface to a computer, the present invention further extends the flexibility of the command based user interface by supporting computer control based on a multiple command input, with temporally synchronous (or overlapping asynchronous) tuples of one or more commands (e.g. particular identification numbers and sensed states) being read by the tag reader. Single and multiple commands can in turn be extended by participation in a “sentence”. A sentence is defined as a sequence of one or more temporally disjoint commands or command tuples. The sentence level allows definition of a input grammar by appropriate choice of command sequence, and corollary rules governing, for example, use of active verb-like commands (e.g. “go to”, “zoom-in”, “rotate”), naming noun-like commands (e.g. DOC
1
.TXT, “yesterday's viewpoint”), or connectors (e.g. AND).
In effect, the present invention provides a method for transferring complex instruction sequences and information from one or more electronic tags to an electronic tag reader connected computer. The method comprises the steps of manipulating one or more tags to provide a first command input (that includes the tag identification number) to the computer, with the first command input normally triggering
Fishkin Kenneth P.
Grossweiler, III Richard C.
Gujar Anuj Uday
Harrison Beverly L.
Want Roy
Burtzlaff Robert A.
Nguyen Cao (Kevin)
Xerox Corporation
Young Joseph M.
LandOfFree
Navigation of rendered virtual environments using physical tags does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Navigation of rendered virtual environments using physical tags, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Navigation of rendered virtual environments using physical tags will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3129425