Navigation information system

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C342S457000, C701S213000, C701S217000, C701S220000, C701S209000, C701S211000

Utility Patent

active

06169515

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to navigation information systems. It is particularly suitable for use in providing users of road vehicles with route guidance, but other applications are possible and are discussed below.
2. Related Art
Navigation of a vehicle through an unfamiliar complex road network is a difficult task. Large amounts of fuel and time are wasted as a result of drivers getting lost or using an inefficient route. Accidents can also be caused by drivers attempting to read maps or complex road signs and losing concentration on the road ahead. Moreover, a driver may choose an inefficient route as a result of using an out-of-date map.
An additional problem can occur even if a driver knows a route to his or her destination. That route may be congested or blocked as a result of accidents or maintenance work, so that an alternative route would be more efficient.
Several proposals have been made for navigation guidance systems. In some such proposals a vehicle-borne system has a navigation computer and a geographical information system which is essentially a digitised map stored on a CD-ROM. The system gives the driver information and guidance by screen and/or speech display. These systems would be very expensive. Each vehicle requires a navigation computer and geographical information system. The cost of the complex vehicle-borne equipment involved is estimated to be in the region of £1000. The system is complex to operate, and could only be safely operated by the driver whilst the vehicle is stationary. The geographical information system would require periodic updating, which requires new disks to be distributed to subscribers from time to time.
In some proposed systems of this type real-time data would be broadcast over a radio network to update fixed information held on the geographical information system. Even so, the geographical information system would only be accurate up to its last update. Moreover, a broadcast channel needs to be allocated for the updating service.
It has also been proposed that the guidance service provider collects statistical traffic flow data from which traffic congestion predictions can be made which are fed into the real-time data to be broadcast. The traffic flow data may be collected using roadside sensors, or they may be collected by monitoring the operation of the mobile user equipment. The latter approach can only collect data relating to users of the system, but has a lower capital cost.
In an alternative approach a system of short-range roadside beacons is used to transmit guidance information to passing vehicles equipped with simple transceivers. The beacons transmit information to suitably equipped passing vehicles to give turn instructions appropriate to their chosen destinations. For each beacon the territory to be covered is divided into as many zones as there are exits from the junction the beacon relates to. The zone in which the user's chosen destination falls is determined, and instructions are given appropriate to that zone. At any given beacon all vehicles whose destinations are in the same zone get the same instruction. The definitions of the zones are dependant on the location of the beacons, and each zone comprises the set of destinations which should be reached from the beacon by taking the direction associated with that zone.
SUMMARY OF THE INVENTION
Each beacon only gives instructions for reaching the next beacon along the route to the vehicle's destination. For two vehicles starting from the same point for different destinations for which the routes are initially coincident, the beacons along the coincident section of route will each give both users the same instructions, because for those beacons both users are travelling to the same zone. Only for the beacon at the point of divergence are the two users' destinations in different zones, and therefore different instructions are given.
The beacons programming may be modified from time to time by control signals from a central control station, in a way analogous to remotely controlled adjustable signposts, but in its interactions with the user equipment the beacon is autonomous, identifying which of its zones the user's desired destination is in, and transmitting the appropriate “turn” information to get it to the next beacon on the way. The beacon has no knowledge of the rest of the route.
Each beacon has a detailed map of a small local area (the boundaries of which are, in fact, the adjacent beacons), and if the destination is in this area the beacon gives full information of the route to the destination. The system can therefore provide a user with directions to a destination defined more precisely than the beacon spacing. However, at the beginning of a journey, a user cannot use the system until he encounters a beacon.
This proposed system allows instant updating of the guidance instructions from a central control, and simpler in-vehicle equipment, but requires vast capital expenditure in roadside beacons.
A problem encountered with both the proposed systems described above is that it is difficult for them to provide alternative routings in response to congestion, either current or future, without the risk of creating worse problems on the alternative routes. Although predictions of regularly occurring congestion peaks are relatively simple to programme into the guidance information, and, at least in the beacon system, real-time updates on road congestion can also be fed to the programming of the beacons, the control system does not have any information of vehicle movements from which to predict future congestion. In any case, if the system is in use by a significant fraction of the vehicles, the system will tend to produce congestion on the diversionary routes.
According to a first aspect of the invention, there is provided a navigation information system for providing information to a mobile user dependent on the location of the mobile user, the system comprising a mobile communications system having a fixed part and one or more mobile units for communicating with the fixed part, each mobile unit including means for transmitting to the fixed part a request for guidance information relating to a destination specified by the user of the mobile unit, and for receiving such guidance information from the fixed part, and the fixed part including: means for determining the location of a mobile unit requesting guidance information, means for generating guidance information according to the present location and specified destination of the mobile unit, and means for transmitting the guidance information so generated to the mobile unit, whereby information dependent on the present location and specified destination of the mobile unit can be transmitted to the mobile unit.
According to a second aspect of the invention, there is provided a navigation information system for providing information to one or more mobile users dependent on their locations, the system comprising: means for determining the location of a mobile unit requesting guidance information relating to a specified destination, means for generating information for guidance of the user of the mobile unit according to the present location and specified destination of the mobile unit, and a communications system for transmitting the guidance information so generated to the mobile unit, whereby guidance information dependent on the present location and specified destination of the mobile unit can be transmitted to the mobile unit.
According to a third aspect, there is provided a mobile unit for a navigation information system, comprising means for identifying the present position of the mobile unit, means for transmitting, over a communications link, a request for guidance to a specified destination, and guidance instruction means controllable by guidance instruction information received over the communications link, whereby guidance instructions between the present location and the specified location can be communicated to a user by me

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Navigation information system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Navigation information system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Navigation information system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468005

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.