Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample
Reexamination Certificate
2011-03-22
2011-03-22
Yu, Melanie (Department: 1641)
Chemical apparatus and process disinfecting, deodorizing, preser
Analyzer, structured indicator, or manipulative laboratory...
Means for analyzing liquid or solid sample
C422S050000, C422S082020, C436S518000, C436S524000, C436S525000, C435S004000, C435S007100, C435S283100, C435S287100, C435S287200
Reexamination Certificate
active
07910064
ABSTRACT:
This invention provides nanowire based molecular sensors and methods for detecting analytes in a microfluidic system. Methods for sensing analytes include detecting changed electrical parameters associated with contact of a nanowire with the analyte in a microfluidic system. Sensors of the invention include nanowires mounted in microchambers of a microfluidic system in electrical contact with the detector, whereby electrical parameter changes induced in the nanowire by the analyte can be monitored by the detector.
REFERENCES:
patent: 4673474 (1987-06-01), Ogawa
patent: 4939556 (1990-07-01), Eguchi et al.
patent: 5089545 (1992-02-01), Pol
patent: 5274602 (1993-12-01), Glenn
patent: 5453970 (1995-09-01), Rust et al.
patent: 5475341 (1995-12-01), Reed
patent: 5589692 (1996-12-01), Reed
patent: 5599668 (1997-02-01), Stimpson et al.
patent: 5620850 (1997-04-01), Bamdad et al.
patent: 5640343 (1997-06-01), Gallagher et al.
patent: 5646001 (1997-07-01), Terstappen et al.
patent: 5739057 (1998-04-01), Tiwari et al.
patent: 5751156 (1998-05-01), Muller et al.
patent: 5830538 (1998-11-01), Gates et al.
patent: 5847565 (1998-12-01), Narayanan
patent: 5858862 (1999-01-01), Westwater et al.
patent: 5897945 (1999-04-01), Lieber et al.
patent: 5903010 (1999-05-01), Flory et al.
patent: 5942443 (1999-08-01), Parce et al.
patent: 5997832 (1999-12-01), Lieber et al.
patent: 6036774 (2000-03-01), Lieber et al.
patent: 6038060 (2000-03-01), Crowley
patent: 6060724 (2000-05-01), Flory et al.
patent: 6069380 (2000-05-01), Chou et al.
patent: 6123819 (2000-09-01), Peeters
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6143184 (2000-11-01), Martin et al.
patent: 6149819 (2000-11-01), Martin et al.
patent: 6203864 (2001-03-01), Zhang et al.
patent: 6207392 (2001-03-01), Weiss et al.
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6286226 (2001-09-01), Jin
patent: 6325904 (2001-12-01), Peeters
patent: 6346189 (2002-02-01), Dai et al.
patent: 6437329 (2002-08-01), Yedur et al.
patent: 6528020 (2003-03-01), Dai et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6843902 (2005-01-01), Penner et al.
patent: 7163659 (2007-01-01), Stasiak et al.
patent: 2001/0054709 (2001-12-01), Heath et al.
patent: 2002/0117659 (2002-08-01), Lieber
patent: 2002/0179434 (2002-12-01), Dai et al.
patent: 2003/0054356 (2003-03-01), Jacobson et al.
patent: 2003/0089899 (2003-05-01), Lieber et al.
patent: 2003/0134433 (2003-07-01), Gabriel et al.
patent: 2003/0215816 (2003-11-01), Sundararajan et al.
patent: 2003/0215865 (2003-11-01), Mayer et al.
patent: 2004/0132070 (2004-07-01), Star et al.
patent: 2004/0136866 (2004-07-01), Pontis et al.
patent: 2004/0188780 (2004-09-01), Kurtz
patent: 2004/0210289 (2004-10-01), Wang et al.
patent: 2005/0019842 (2005-01-01), Prober et al.
patent: 2005/0053525 (2005-03-01), Segal et al.
patent: 2006/0054936 (2006-03-01), Lieber et al.
patent: 1087413 (2001-03-01), None
patent: WO-9839250 (1998-09-01), None
patent: WO-9842620 (1999-10-01), None
patent: WO-0009443 (2000-02-01), None
patent: WO-0017101 (2000-03-01), None
patent: WO-0019494 (2000-04-01), None
patent: WO-0103208 (2001-01-01), None
patent: WO-0217362 (2002-02-01), None
patent: WO-0248701 (2002-06-01), None
patent: WO-03005450 (2003-01-01), None
Chen, J. et al. “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device” Science (1999) 286:1550-1552.
Chung, S-W. et al., “Silicon nanowire devices” Appl. Phys. Letts. (2000) 76:2068-2070.
Collier, C.P. et al., “Electronically Configurable Molecular-Based Logic Gates” Science (1999) 285:391-394.
Cui, Y. et al., “Functional nanoscale electronic devices assembled using silicon nanowire building blocks” Science (2001) 291:851-853.
Cui, Y. et al., “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species” Science (2001) 293:1289-1292.
Cui, Y. et al., “Diameter-controlled synthesis of single-crystal silicon nanowires” Appl. Phys. Letts. (2001) 78(15):2214-2216.
Cui, Y. et al., “Doping and electrical transport in silicon nanowires” J. Phys. Chem. (2000) 104(22):5213-5216.
Duan, X. et al., “General Synthesis of compound semiconductor nanowires” Adv. Materials (2000) 12(4):298-302.
Duan, X. et al., “Laser-assisted catalytic growth of singl crystal GaN Nanowires” J. Am. Chem. Soc. (1999) 122:188-189.
Duan et al., “Indium phosphide nanowires as bulding blocks for nanoscale electronic and optoelectronic devices” Nature (2001) 409:66-69.
Esfarjani, K. et al., “Electronic and transport properties of N-P doped nanotubes” Appl. Phys. Letts. (1999) 74:79-81.
Givargizov, E.I. “Fundamental aspects of VSL growth” J. Crys. Growth (1975) 31:20-30.
Gudikson, M.S. et al., “Diameter-selective synthesis of semiconductor nanowires” J. Am. Chem. Soc. (2000) 122:8801-8802.
Gudikson, M.S. et al., “Growth of nanowire supperlattice structures for nanoscale photonics and electronics” Nature (2002) 415:617-620.
Haraguchi, K. et al., “GaAs p-n junction formed in quantum wire crystals” Appl. Phys. Letts. (1992) 60:745-747.
Haraguchi, K. et al., “Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals” J. Appl. Phys. (1994) 74(8):4220-4225.
Hiruma, K. et al., “Self-organized growth of GaAs/InAs heterostructure nanocylinders by organometallic vapor phase epitaxy” J. Chrys. Growth (1996) 163:226-231.
Huang, Y. et al., “Directed assembly of one-dimensional nanostructures into functional networks” Science (2001) 291:630-633.
Huang, Y. et al., “Logic gates and computation from assembled nanowire building blocks” Science (2001) 294:1313-1317.
Kanjanachuchai, S. et al., “Coulomb blockage in strained-Si nanowires on leaky virtual substrates” Semiconductor Science and Technology (2001) 16:72-76.
Kong et al., “Nanotube molecular wires as chemical sensors” Science (2000) 287:622-625.
Morales, A.M. et al., “A Laser Ablation Method for the Synthesis of Crystalline Seminconductor Nanowires” Science (1998) 279:208-211.
Padaste C. et al., “Modular amperometric immunosensor devices” Transducers 95 (1995) 2:487-490.
Tans, S.J. et al., “Room-termperature transistor based on a single carbon nanotube” Nature (1998) 393:49-52.
Tiefenauer, L.X. et al., “Toward amperometric immunosensor devices” Biosensors & Bioelectronics (1997) 12(3):213-223.
Wang, J. et al., “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires” Science (2001) 293:1455-1457.
Wolf, W. et al., “Silicon processing for the VLSI era” Lattice Press 1:12-13 2000.
Wu, Y. et al., “Block-by-Block growth of single-crystalling Si?SiGe superlattice nanowires” Nanoletters (2002) 2(2):83-86.
Yamada, T., “Analysis of submicron carbon nanotube field-effect transistors” Appl. Phys. Letts. (2000) 76:628-630.
Yu, D.P. et al., “Nanoscale silicon wires synthesized using simple physical evaporation” Appl. Phys. Letts (1998) 72:3458-3460.
Chow Calvin Y. H.
Dubrow Robert S.
Hamilton James M.
Fabian Donna M.
Nanosys Inc.
Yu Melanie
LandOfFree
Nanowire-based sensor configurations does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nanowire-based sensor configurations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanowire-based sensor configurations will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2659369