Semiconductor device manufacturing: process – Having organic semiconductive component
Reexamination Certificate
2006-07-04
2006-07-04
Lebentritt, Michael (Department: 2812)
Semiconductor device manufacturing: process
Having organic semiconductive component
C438S128000, C438S142000, C257S211000, C257SE27004, C029S622000, C333S133000, C333S187000, C977S726000
Reexamination Certificate
active
07071023
ABSTRACT:
Nanotube device structures and methods of fabrication. Under one embodiment, a method of forming a nanotube switching element includes forming a first structure having at least one output electrode, forming a conductive article having at least one nanotube, and forming a second structure having at least one output electrode and positioning said second structure in relation to the first structure and the conductive article such that the output electrode of the first structure is opposite the output electrode of the second structure and such that a portion of the conductive article is positioned therebetween. At least one signal electrode is provided in electrical communication with the conductive article having at least one nanotube, and at least one control electrode is provided in relation to the conductive article such that the conductive electrode may control the conductive article to form a channel between the signal electrode and at least one of the output electrodes. The first and second structures each include a respective second output electrode and wherein the second electrodes are positioned opposite each other with the conductive article positioned therebetween. The control electrode and the second control electrode includes an insulator layer on a surface facing the conductive article.
REFERENCES:
patent: 4979149 (1990-12-01), Popovic et al.
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6159620 (2000-12-01), Heath et al.
patent: 6183714 (2001-02-01), Smalley et al.
patent: 6198655 (2001-03-01), Heath et al.
patent: 6221330 (2001-04-01), Moy et al.
patent: 6232706 (2001-05-01), Dai et al.
patent: 6376787 (2002-04-01), Martin et al.
patent: 6426687 (2002-07-01), Osborn
patent: 6445006 (2002-09-01), Brandes et al.
patent: 6518156 (2003-02-01), Chen
patent: 6548841 (2003-04-01), Frazier et al.
patent: 6559468 (2003-05-01), Kuekes et al.
patent: 6574130 (2003-06-01), Segal et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6673424 (2004-01-01), Lindsay
patent: 6706402 (2004-03-01), Rueckes et al.
patent: 6741334 (2004-05-01), Asano et al.
patent: 6750471 (2004-06-01), Bethune et al.
patent: 6759693 (2004-07-01), Vogeli et al.
patent: 6774052 (2004-08-01), Vogeli et al.
patent: 6781166 (2004-08-01), Lieber et al.
patent: 6784028 (2004-08-01), Rueckes et al.
patent: 6803840 (2004-10-01), Hunt et al.
patent: 6809465 (2004-10-01), Jin
patent: 6835591 (2004-12-01), Rueckes et al.
patent: 6884734 (2005-04-01), Buehrer et al.
patent: 6946410 (2005-09-01), French et al.
patent: 2002/0130311 (2002-09-01), Lieber et al.
patent: 2002/0130353 (2002-09-01), Lieber et al.
patent: 2002/0172963 (2002-11-01), Kelley et al.
patent: 2002/0175390 (2002-11-01), Goldstein et al.
patent: 2002/0179434 (2002-12-01), Dai et al.
patent: 2003/0021966 (2003-01-01), Segal et al.
patent: 2003/0124325 (2003-07-01), Rueckes et al.
patent: 2003/0165074 (2003-09-01), Segal et al.
patent: 2003/0234407 (2003-12-01), Vogeli et al.
patent: 2003/0236000 (2003-12-01), Vogeli et al.
patent: 2004/0085805 (2004-05-01), Segal et al.
patent: 2004/0099438 (2004-05-01), Arthur et al.
patent: 2004/0159833 (2004-08-01), Rueckes et al.
patent: 2004/0164289 (2004-08-01), Rueckes et al.
patent: 2004/0175856 (2004-09-01), Jaiprakash et al.
patent: 2004/0181630 (2004-09-01), Jaiprakash et al.
patent: 2004/0191978 (2004-09-01), Rueckes et al.
patent: 2004/0198030 (2004-10-01), Buehrer et al.
patent: 2004/0214366 (2004-10-01), Segal et al.
patent: 2004/0214367 (2004-10-01), Segal et al.
patent: 2005/0007002 (2005-01-01), Golovchenko et al.
patent: 2005/0035344 (2005-02-01), Bertin et al.
patent: 2005/0035367 (2005-02-01), Bertin et al.
patent: 2005/0035786 (2005-02-01), Bertin et al.
patent: 2005/0035787 (2005-02-01), Bertin et al.
patent: 2005/0040874 (2005-02-01), Allison et al.
patent: 2005/0041466 (2005-02-01), Rueckes et al.
patent: WO 01/03208 (2001-01-01), None
patent: WO 01/44797 (2001-06-01), None
patent: WO 03/091486 (2003-11-01), None
patent: WO 04/065655 (2004-08-01), None
patent: WO 04/065657 (2004-08-01), None
patent: WO 04/065671 (2004-08-01), None
Ajayan, P.M., et al., “Nanometre-size tubes of carbon,” Rep. Prog. Phys., 1997, vol. 60, pp. 1025-1062.
Ami, S. et al., “Logic gates and memory cells based on single C60electromechanical transistors,” Nanotechnology, 2001, vol. 12, pp. 44-52.
Avouris, P., “Carbon nanotube electronics,” Carbon, 2002, vol. 14, pp. 1891-1896.
Casavant, M.J. et al., “Neat macroscopic membranes of aligned carbon nanotubes,” Journal of Appl. Phys., 2003, vol. 93(4), pp. 2153-2156.
Choi, W.-B. et al., “Carbon-nanotube-based nonvolatile memory with oxide-nitride-film and nanoscale channel,” Appl. Phys. Lett., 2003, vol. 82(2), pp. 275-277.
Cui, J.B. et al., “Carbon Nanotube Memory Devices of High Charge Storage Stability,” Appl. Phys. Lett., 2002, vol. 81(17), pp. 3260-3262.
Dai, H. et al., “Controlled Chemical Routes to nanotube Architectures, Physics, and Devices,” J. Phys. Chem. B, 1999, vol. 103, pp. 111246-11255.
Dehon, A., “Array-Based Architecture for FET-Based, Nanoscale Electronics,” IEEE Transactions on Nanotechnology, 2003, vol. 2(1), pp. 23-32.
Dequesnes, M. et al., “Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches,” Nanotechnology, 2002, vol. 13, pp. 120-131.
Dequesnes, M. et al., “Simulation of carbon nanotube-based nanoelectromechanical switches,” Computational Nanoscience and Nanotechnology, 2002, pp. 383-386.
Fan, S. et al., “Carbon nanotube arrays on silicon substrates and their possible application,” Physica E, 2000, vol. 8, pp. 179-183.
Farajian, A. A. et al., “Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches,” Phys. Rev. B, 2003, vol. 67, pp. 205423-1=205423-6.
Fischer, J.E. et al., “Magnetically aligned single wall carbon nanotube films: Preferred Orientation and Anisotropic tTransport Properties,” Journal of Appl. Phys., 2003, vol. 93(4), pp. 2157-2163.
Franklin, N. R. et al., “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett., 2002, vol. 81(5), pp. 913-915.
Fuhrer, M.S. et al., “High-Mobility Nanotube Transistor Memory,” Nano Letters, 2002, vol. 2(7), pp. 755-759.
Homma, Y. et al., “Growth of Suspended Carbon Nanotubes Networks on 100-nm-scale Silicon Pillars,” Appl. Phys. Lett., 2002, vol. 81(12), pp. 2261-2263.
Kinaret, J.M. et al., “A carbon-nanotube-based nanorelay”, Appl. Phys. Lett., 2003, vol. 82(8), pp. 1287-1289.
Lee, K.-H. et al., “Control of growth orientation for carbon nanotubes,” Appl, Phys. Lett., 2003, vol. 82(3), pp. 448-450.
Radosavljevic, M. et al., “Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors,” Nano Letters, 2002, vol. 2(7), pp. 761-764.
Robinson, L.A.W., “Self-Aligned Electrodes for Suspended Carbon Nanotube Structures,” Microelectronic Engineering, 2003, vols. 67-68, pp. 615-622.
Rueckes, T., “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing” Science, 2000, vol. 289, pp. 94-97.
Soh, H. T. et al., “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes,” Appl. Phys. Lett., 1999, vol. 75(5), pp. 627-629.
Sreekumar, T.V., et al., “Single-wall Carbon Nanotube Films”, Chem. Mater. 2003, vol. 15, pp. 175-178.
Tans, S. et al., “Room-temperature based on a single carbon nanotube,” Nature, 1998, vol. 393, pp. 49-52.
Tour, J. M. et al., “NanoCell Electronic Memories,” J. Am. Chem Soc., 2003, vol. 125, pp. 13279-13283.
Verissimo-Alves, M. et al., “Electromechanical effects in carbon nanotubes: Ab initio and analytical tight-binding calculations,” Phys. Rev. B, 2003, vol. 67, pp. 161401-1-161401-4.
Wolf, S., S
Bertin Claude L.
Rueckes Thomas
Segal Brent M.
Lebentritt Michael
Nantero Inc.
Pompey Ron
Wilmer Cutler Pickering Hale and Dorr LLP
LandOfFree
Nanotube device structure and methods of fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nanotube device structure and methods of fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanotube device structure and methods of fabrication will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3533901