Nanotechnology neural network methods and systems

Data processing: artificial intelligence – Neural network – Structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S015000, C706S025000, C706S033000

Reexamination Certificate

active

10735934

ABSTRACT:
A physical neural network is disclosed, which includes a connection network comprising a plurality of molecular conducting connections suspended within a connection gap formed between one or more input electrodes and one or more output electrodes. One or more molecular connections of the molecular conducting connections can be strengthened or weakened according to an application of an electric field across said connection gap. Thus, a plurality of physical neurons can be formed from said molecular conducting connections of said connection network. Additionally, a gate can be located adjacent said connection gap and which comes into contact with said connection network. The gate can be connected to logic circuitry which can activate or deactivate individual physical neurons among said plurality of physical neurons.

REFERENCES:
patent: 2707223 (1955-04-01), Hollman
patent: 3222654 (1965-12-01), Widrow et al.
patent: 3833894 (1974-09-01), Aviram et al.
patent: 4802951 (1989-02-01), Clark et al.
patent: 4926064 (1990-05-01), Tapang
patent: 4974146 (1990-11-01), Works et al.
patent: 4988891 (1991-01-01), Mashiko
patent: 5315162 (1994-05-01), McHardy et al.
patent: 5355435 (1994-10-01), DeYong et al.
patent: 5422983 (1995-06-01), Castelaz et al.
patent: 5475794 (1995-12-01), Mashiko
patent: 5589692 (1996-12-01), Reed
patent: 5615305 (1997-03-01), Nunally
patent: 5649063 (1997-07-01), Bose
patent: 5670818 (1997-09-01), Forouhi et al.
patent: 5696883 (1997-12-01), Arima
patent: 5706404 (1998-01-01), Colak
patent: 5717832 (1998-02-01), Steimle et al.
patent: 5761115 (1998-06-01), Kozicki et al.
patent: 5783840 (1998-07-01), Randall et al.
patent: 5812993 (1998-09-01), Ginosar et al.
patent: 5864835 (1999-01-01), Gorelik
patent: 5896312 (1999-04-01), Kozicki et al.
patent: 5904545 (1999-05-01), Smith et al.
patent: 5914893 (1999-06-01), Kozicki et al.
patent: 5951881 (1999-09-01), Rogers et al.
patent: 5978782 (1999-11-01), Neely
patent: 6026358 (2000-02-01), Tomabechi
patent: 6084796 (2000-07-01), Kozicki et al.
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6245630 (2001-06-01), Ishikawa
patent: 6248529 (2001-06-01), Connolly
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6282530 (2001-08-01), Huang
patent: 6294450 (2001-09-01), Chen et al.
patent: 6314019 (2001-11-01), Kuekes et al.
patent: 6330553 (2001-12-01), Uchikawa et al.
patent: 6335291 (2002-01-01), Freeman
patent: 6339227 (2002-01-01), Ellenbogen
patent: 6359288 (2002-03-01), Ying et al.
patent: 6363369 (2002-03-01), Liaw et al.
patent: 6383923 (2002-05-01), Brown et al.
patent: 6389404 (2002-05-01), Carson et al.
patent: 6407443 (2002-06-01), Chen et al.
patent: 6418423 (2002-07-01), Kambhatla et al.
patent: 6420092 (2002-07-01), Yang et al.
patent: 6422450 (2002-07-01), Zhou et al.
patent: 6423583 (2002-07-01), Avouris et al.
patent: 6424961 (2002-07-01), Ayala
patent: 6426134 (2002-07-01), Lavin et al.
patent: 6536106 (2003-03-01), Jackson et al.
patent: 6620346 (2003-09-01), Schultz et al.
patent: 6798692 (2004-09-01), Kozicki et al.
patent: 6855329 (2005-02-01), Shakesheff et al.
patent: 2001/0004471 (2001-06-01), Zhang
patent: 2001/0023986 (2001-09-01), Mancevski
patent: 2001/0024633 (2001-09-01), Lee et al.
patent: 2001/0031900 (2001-10-01), Margrave et al.
patent: 2001/0041160 (2001-11-01), Margrave et al.
patent: 2001/0044114 (2001-11-01), Connolly
patent: 2002/0001905 (2002-01-01), Choi et al.
patent: 2002/0004028 (2002-01-01), Margrave et al.
patent: 2002/0004136 (2002-01-01), Gao et al.
patent: 2002/0030205 (2002-03-01), Varshavsky
patent: 2002/0075126 (2002-06-01), Reitz et al.
patent: 2002/0086124 (2002-07-01), Margrave et al.
patent: 2002/0090468 (2002-07-01), Goto et al.
patent: 2002/0102353 (2002-08-01), Mauthner et al.
patent: 2003/0031438 (2003-02-01), Kambe et al.
patent: 2003/0177450 (2003-09-01), Nugent
patent: 1 022 764 (2000-01-01), None
patent: 1 046 613 (2000-04-01), None
patent: 1 100 106 (2001-05-01), None
patent: 1 069 206 (2001-07-01), None
patent: 1 115 135 (2001-07-01), None
patent: 1 134 304 (2001-09-01), None
patent: 2071126 (1996-06-01), None
patent: WO 00/44094 (2000-07-01), None
patent: WO 03/017282 (2003-02-01), None
Paul M. Adriani et al., Electric-field-induced aggregation in dilute colloidal suspensions, 1990, Faraday Discussions of the Chemical Society, 16-29.
Therese C. Jordan, Electrorheology, 1989, IEEE, 0018-9367/89/1000-849, 849-878.
Kishan Mehrotra et al., Elements of Artificial Neural Networks, 1997, MIT.
S. H. Hong et al., Controllable Capture of Au Nano-Particles by using Dielectrophoresis, Dec. 2004, Journal of the Korean Physical Society, vol. 45, S665-S668.
Peter Weiss, “Circuitry in a Nanowire: Novel Growth Method May Transform Chips,” Science News Online, vol. 161, No. 6; Feb. 9, 2002.
Press Release, “Nanowire-based electronics and optics comes one step closer,” Eureka Alert, American Chemical Society; Feb. 1, 2002.
Weeks et al., “High-pressure nanolithography using low-energy electrons from a scanning tunneling microscope,” Institute of Physics Publishing, Nanotechnology 13 (2002), pp. 38-42; Dec. 12, 2001.
CMP Cientifica, “Nanotech: the tiny revolution”; CMP Cientifica, Nov. 2001.
Diehl, et al., “Self-Assembled, Deterministic Carbon Nanotube Wiring Networks,” Angew. Chem. Int. Ed. 2002, 41, No. 2; Received Oct. 22, 2001.
G. Pirio, et al. “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Institute of Physics Publishing, Nanotechnology 13 (2002), pp. 1-4, Oct. 2, 2001.
Leslie Smith, “An Introduction to Neural Networks,”Center for Cognitive and Computational Neuroscience, Dept. of Computing & Mathematics, University of Stirling, Oct. 25, 1996; http://www.cs.stir.ac.uk/˜lss/NNIntro/InvSlides.html.
V. Derycke et al., “Carbon Nanotube Inter- and Intramolecular Logic Gates,” American Chemical Society, Nano Letters, XXXX, vol. 0, No. 0, A-D.
Mark K. Anderson, “Mega Steps Toward the Nanochip,” Wired News, Apr. 27, 2001.
Collins et al., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science, vol. 292, pp. 706-709, Apr. 27, 2001.
Landman et al., “Metal-Semiconductor Nanocontacts: Silicon Nanowires,” Physical Review Letters, vol. 85, No. 9, Aug. 28, 2000.
John G. Spooner, “Tiny tubes mean big chip advances,” Cnet News.com, Tech News First, Apr. 26, 2001.
Jeong-Mi Moon et al., “High-Yield Purification Process of Singlewalled Carbon Nanotubes,” J. Phys. Chem. B 2001, 105, pp. 5677-5681.
“A New Class of Nanostructure: Semiconducting Nanobelts Offer Potential for Nanosensors and Nanoelectronics,” Mar. 12, 2001, http://www.sciencedaily.com/releases/2001/03/010309080953.htm.
Hermanson et al., “Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions,” Materials Science, vol. 294, No. 5544, Issue of Nov. 2, 2001, pp. 1082-1086.
Press Release, “Toshiba Demonstrates Operation of Single-Electron Transistor Circuit at Room Temperature,” Toshiba, Jan. 10, 2001.
J. Appenzeller et al., “Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes,” Applied Physics Letters, vol. 78, No. 21, pp. 3313-3315, May 21, 2001.
David Rotman, “Molecular Memory, Replacing silicon with organic molecules could mean tiny supercomputers,” Technology Review, May 2001, p. 46.
Westervelt et al., “Molecular Electronics,” NSF Functional Nanostructures Grant 9871810, NSF Partnership in Nanotechnology Conference, Jan. 29-30, 2001; http://www.unix.oit.umass.edu/˜nano/NewFiles/FN19—Harvard.pdf.
Niyogi et al., “Chromatographic Purification of Soluble Single-Walled Carbon Nanotubes (s-SWNTs),” J. Am. Chem. Soc 2001, 123, pp. 733-734, Received Jul. 10, 2000.
Duan et al., “Indium phosphide nanowires as building

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nanotechnology neural network methods and systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nanotechnology neural network methods and systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanotechnology neural network methods and systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3928771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.