Nacreous imaging element containing a voided polymer layer

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Radiation-sensitive composition or product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S056000, C430S201000, C430S220000, C430S496000, C430S510000, C430S523000, C430S533000, C430S536000, C347S106000

Reexamination Certificate

active

06596451

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to imaging materials. In a preferred form, it relates to nacreous voided photographic reflective paper and imaging substrate.
BACKGROUND OF THE INVENTION
Prior art reflective imaging output materials such as silver halide reflective images or ink jet reflective images typically comprise imaging layers applied to a white reflective base material. The white reflective base reflects ambient light back to the observer's eye to form the image in the brain. Prior art base materials typically utilize white reflecting pigments such as TiO
2
or barium sulfate in a polymer matrix to form a white reflective base material. Prior art reflective photographic papers also contain white pigments in the support just below the silver halide imaging layers to obtain image whiteness and sharpness during image exposure, as the white pigment reduces the amount exposure light energy scattered by the cellulose paper core. Details on the use of white pigments in highly loaded coextruded layers to obtain silver halide image sharpness and whiteness are recorded in U.S. Pat. No. 5,466,519.
It has been proposed in U.S. Pat. No. 5,866,282 (Bourdelais et al) to utilize a composite support material with laminated biaxially oriented polyolefin sheets as a photographic imaging material. In U.S. Pat. No. 5,866,282, biaxially oriented polyolefin sheets are extrusion laminated to cellulose paper to create a support for silver halide imaging layers. The biaxially oriented sheets described in U.S. Pat. No. 5,866,282 have a microvoided layer in combination with coextruded layers that contain white pigments such as TiO
2
above and below the microvoided layer. The composite imaging support structure described in U.S. Pat. No. 5,866,282 has been found to be more durable, sharper and brighter than prior art photographic paper imaging supports that use cast melt extruded polyethylene layers coated on cellulose paper.
Blends of linear polyesters with other incompatible materials of organic or inorganic nature to form microvoided structures are well-known in the art. U.S. Pat. No. 3,154,461 discloses, for example, linear polyesters blended with, for example, calcium carbonate. U.S. Pat. No. 3,944,699 discloses blends of linear polyesters with 3 to 27% of organic material such as ethylene or propylene polymer. U.S. Pat. No. 3,640,944 also discloses the use of poly(ethylene terephthalate) blended with 8% organic material such as polysulfone or poly(4-methyl-1-pentene). U.S. Pat. No. 4,377,616 discloses a blend of polypropylene to serve as the matrix with a small percentage Of another and incompatible organic material, nylon, to initiate microvoiding in the polypropylene matrix. U.K. Patent Specification 1,563,591 discloses linear polyester polymers for making opaque thermoplastic film support in which have been blended finely divided particles of barium sulfate together with a void-promoting polyolefin, such as polyethylene, polypropylene or poly-4-methyl-1-pentene.
The above-mentioned patents show that it is known to use incompatible blends to form films having paper-like characteristics after such blends have been extruded into films and the films have been quenched, biaxially oriented and heat set. The minor component of the blend, due to its incompatibility with the major component of the blend, upon melt extrusion into film forms generally spherical particles each of which initiates a microvoid in the resulting matrix formed by the major component. The melting points of the void initiating particles, in the use of organic materials, should be above the glass transition temperature of the major component of the blend and particularly at the temperature of biaxial orientation.
As indicated in U.S. Pat. No. 4,377,616, spherical particles initiate voids of unusual regularity and orientation in a stratified relationship throughout the matrix material after biaxial orientation of the extruded film. Each void tends to be of like shape, not necessarily of like size since the size depends upon the size of the particle. Ideally, each void assumes a shape defined by two opposed and edge contacting concave disks. In other words, the voids tend to have a lens-like or biconvex shape. The voids are oriented so that the two major dimensions are aligned in correspondence with the direction of orientation of the film structure. One major dimension is aligned with machine direction orientation, a second major dimension is aligned with the transverse direction orientation, and a minor dimension approximately corresponds to the cross-section dimension of the void-initiating particle.
It has been proposed in U.S. Pat. No. 6,071,680 (Bourdelais et al) to utilize a voided polyester sheet coated with light sensitive silver halide imaging layers for use as photographic output material. The voided layer in U.S. Pat. No. 6,071,680 improves opacity, image lightness, and image brightness compared to prior art polyethylene melt extrusion coated cellulose paper base materials. The image base proposed in U.S. Pat. No. 6,071,680 also contains an integral polyolefin skin layer to facilitate imaging layer adhesion at the time of manufacture and during the processing of silver halide imaging layers.
There, however, remains a continuing need for improvements to the appearance of imaging output materials. It has been shown that consumers, in addition to reflective output material, also prefer nacreous images. Nacreous images exhibit a pearly or nacreous luster, an iridescent play of colors, and a brilliant luster that appears in three dimensions. Nacreous appearance can be found in nature if one examines a pearl or the polished shell of
Turbo marmoratus.
A nacreous photographic element with a microvoided sheet of opalescence is described in U.S. Pat. No. 5,888,681 (Gula et al). In U.S. Pat. No. 5,888,681 microvoided polymer sheets with microvoided polymer layer located between a cellulose paper base and developed silver halide imaging provide an image with an opalescence appearance. The nacreous appearance is created in U.S. Pat. No. 5,888,681 by providing multiple internal reflections in the voided layer of the polymer sheet. While the opalescence appearance is present in the image, the image suffers from a loss of image sharpness or acutance, a higher density minimum position, and a decrease in printing speed compared to a typical photographic image formed on a white, reflecting base. It would be desirable if the opalescent look of the image could be maintained while improving printing speed, increasing sharpness, and decreasing density minimum. Also, while the voided polymer does provide an excellent nacreous image, the voided layer, because it is pre-fractured, is subjected to permanent deformation, thus reducing the quality of the image.
In addition to the use of white pigments in reflective consumer photographs, white pigments are also utilized in photographic display materials for diffusion of illumination light source. While the use of white pigments in display materials does provide the desired diffusion and reflection properties, the white pigments tend to change the hue angle of the color dyes in a developed photographic display image. Dye hue angle is a measure in CIElab color space of that aspect of color vision that can be related to regions of the color spectrum. For color photographic systems there is a perceptual preferred dye hue angle for the yellow, magenta, and cyan dyes. It has been found that when photographic dyes are coated on support containing white pigments, the hue angle of the developed image changes compared to the hue angle of the dyes coated onto a transparent support. The hue angle change of photographic dyes caused by the presence of white pigments often reduces the perceived quality of the dyes compared to the dye set coated on a transparent base that is substantially free of white pigments. It would be desirable if a developed photographic dye set coated on a reflective support material had a dye hue angle that was not significantly different than the same dye set coa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nacreous imaging element containing a voided polymer layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nacreous imaging element containing a voided polymer layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nacreous imaging element containing a voided polymer layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3033077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.