N-oxides of heterocyclic esters, amides, thioesters, and...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S315000, C514S423000, C540S529000, C546S245000, C548S530000

Reexamination Certificate

active

06251892

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to neurotrophic low molecular weight, small molecule N-oxides of heterocyclic esters having an affinity for FKBP-type immunophilins, and their use as inhibitors of the enzyme activity associated with immunophilin proteins, particularly peptidyl-prolyl isomerase, or rotamase, enzyme activity.
2. Description of Related Art
The term immunophilin refers to a number of proteins that serve as receptors for the principal immunosuppressant drugs, cyclosporin A (CsA), FK506 and rapamycin. Known classes of immunophilins are cyclophilins and FK506 binding proteins, or FKBPs. Cyclosporin A binds to cyclophilin A while FK506 and rapamycin bind to FKBP12. These immunophilin-drug complexes interface with various intracellular signal transduction systems, especially the immune and nervous systems.
Immunophilins are known to have peptidyl-prolyl isomerase (PPIase), or rotamase, enzyme activity. It has been determined that rotamase enzyme activity plays a role in the catalyzation of the interconversion of the cis and trans isomers of peptide and protein substrates for the immunophilin proteins.
Immunophilins were originally discovered and studied in the immune tissue. It was initially postulated by those skilled in the art that inhibition of the immunophilins' rotamase activity leads to inhibition of T-cell proliferation, thereby causing the immunosuppressive activity exhibited by immunosuppressant drugs, such as cyclosporin A, FK506 and rapamycin. Further study has shown that the inhibition of rotamase activity, in and of itself, does not result in immunosuppressive activity. Schreiber et al.,
Science,
1990, vol. 250, pp. 556-559. Instead, immunosuppression appears to stem from the formulation of a complex of immunosuppressant drugs and immunophilins. It has been shown that the immunophilin-drug complexes interact with ternary protein targets as their mode of action. Schreiber et al.,
Cell,
1991, vol. 65, pp. 807-815. In the case of FKBP-FK506 and cyclophilin-CsA, the immunophilin-drug complexes bind to the enzyme calcineurin and inhibit the T-cell receptor signalling which leads to T-cell proliferation. Similarly, the immunophilin-drug complex of FKBP-rapamycin interacts with the RAFT1/FRAP protein and inhibits the IL-2 receptor signalling.
Immunophilins have been found to be present at high concentrations in the central nervous system. Immunophilins are enriched 10-50 times more in the central nervous system than in the immune system. Within neural tissues, immunophilins appear to influence nitric oxide synthesis, neurotransmitter release and neuronal process extension.
It has been found that picomolar concentrations of an immunosuppressant such as FK506 and rapamycin stimulate neurite outgrowth in PC12 cells and sensory neurons, namely dorsal root ganglion cells (DRGs). Lyons et al.,
Proc. of Natl. Acad. Sci.,
1994, vol. 91, pp. 3191-3195. In whole animal experiments, FK506 has been shown to stimulate nerve regeneration following facial nerve injury.
Surprisingly , it has been found that certain compounds with a high affinity for FKBPs are potent rotamase inhibitors and exhibit excellent neurotrophic effects. Furthermore, these rotamase inhibitors are devoid of immunosuppressive activity. These findings suggest the use of rotamase inhibitors in treating various peripheral neuropathies and enhancing neuronal regrowth in the central nervous system (CNS). Studies have demonstrated that neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS) may occur due to the loss, or decreased availability, of a neurotrophic substance specific for a particular population of neurons affected in the disorder.
Several neurotrophic factors affecting specific neuronal populations in the central nervous system have been identified. For example, it has been hypothesized that Alzheimer's disease results from a decrease or loss of nerve growth factor (NGF). It has thus been proposed to treat Senile Dementia Alzheimer's Type (SDAT) patients with exogenous nerve growth factor or other neurotrophic proteins, such as brain derived growth factor, glial derived growth factor, ciliary neurotrophic factor and neurotropin-3, to increase the survival of degenerating neuronal populations.
Clinical application of these proteins in various neurological disease states is hampered by difficulties in the delivery and bioavailability of large proteins to nervous system targets. By contrast, immunosuppressant drugs with neurotrophic activity are relatively small and display excellent bioavailability and specificity. However, when administered chronically, immunosuppressant drugs exhibit a number of potentially serious side effects including nephrotoxicity, such as impairment of glomerular filtration and irreversible interstitial fibrosis (Kopp et al.,
J. Am. Soc. Nephrol.,
1991, 1:162); neurological deficits, such as involuntary tremors, or non-specific cerebral angina, such as non-localized headaches (De Groen et al.,
N. Engl. J. Med.,
1987, 317:861); and vascular hypertension with complications resulting therefrom (Kahan et al.,
N. Engl. J. Med.,
1989, 321:1725).
In order to prevent the side effects associated with use of the immunosuppressant compounds, the present invention provides non-immunosuppressive compounds containing small molecule FKBP rotamase inhibitors for enhancing neurite outgrowth, and promoting neuronal growth and regeneration in various neuropathological situations where neuronal repair can be facilitated, including: peripheral nerve damage caused by physical injury or disease state such as diabetes; physical damage to the central nervous system (spinal cord and brain); brain damage associated with stroke; and neurological disorders relating to neurodegeneration, such as Parkinson's disease, SDAT (Alzheimer's disease), and amyotrophic lateral sclerosis.
SUMMARY OF THE INVENTION
The present invention relates to neurotrophic low molecular weight, small molecule compounds having an affinity for FKBP-type immunophilins. Once bound to these proteins, the neurotrophic compounds are potent inhibitors of the enzyme activity associated with immunophilin proteins, particularly peptidyl-prolyl isomerase, or rotamase, enzyme activity. A key feature of the compounds of the present invention is that they do not exert any significant immunosuppressive activity in addition to their neurotrophic activity. Another significant feature is the novel addition of the oxidation of specific amine groups to the corresponding N-oxide to provide an unexpected increase in bioavailability and potency as compared to compounds lacking the N-oxide group.
Specifically, the present invention relates to a compound of formula I:
or a pharmaceutically acceptable salt thereof, wherein:
A and B are taken together, with the nitrogen and carbon atoms to which they are respectively attached, to form a 5-7 membered saturated or unsaturated heterocyclic ring containing any combination of CH
2
, O, S, SO, SO
2
, NH or NR
1
in any chemically stable oxidation state;
W is O, S, CH
2
, or H
2
;
R is a C
1
-C
6
straight or branched chain alkyl or alkenyl group optionally substituted with C
3
-C
8
cycloalkyl, C
3
or C
5
cycloalkyl, C
5
-C
7
cycloalkenyl, or Ar
1
, where said alkyl, alkenyl, cycloalkyl, or cycloalkenyl groups may be optionally substituted with C
1
-C
4
alkyl, C
1
-C
4
alkenyl, or hydroxy, and where Ar
1
is selected from the group consisting of 1-naphthyl, 2-naphthyl, 1-indolyl, 2-indolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, or phenyl, having one to three substituents which are independently selected from the group consisting of hydrogen, halo, hydroxyl, nitro, trifluoromethyl, C
1
-C
6
straight or branched alkyl or alkenyl, C
1
-C
4
alkenyloxy, phenoxy, benzyloxy, and amino;
X is O, NH, NR
1
, S, CH, CR
1
, or C(R
1
)
2
;
Y is a direct bond, or a C1-C
6
straight or branched chain alkyl or alkenyl which is optionally sub

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

N-oxides of heterocyclic esters, amides, thioesters, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with N-oxides of heterocyclic esters, amides, thioesters, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and N-oxides of heterocyclic esters, amides, thioesters, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2533296

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.