N-methoxymethyl-5,5-diphenylbarbituric acid

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S305000

Reexamination Certificate

active

06664262

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a new means for N-alkylating ureides that is higher yielding, more convenient, and safer to use than techniques practiced heretofore. This approach is particularly suited to preparing N-(alkoxyalkylene) ureides, which include anti-convulsant drugs of the N-substituted barbituric acid class.
The term ureide is used in e.g. Foye,
Principles of Medicinal Chemistry,
3d ed. (1990), pp. 164, 179, which is incorporated herein by reference. Ureides are a class of imides of general structure I:
Examples include hypnotics, such as acecarbromal, apronalide, bromisolvalum, capuride, carbromal, and ectylurea; and anticonvulsant drugs such as hydantoins, glutarimides, oxazolidinediones, succinimides, and barbiturates such as barbituric acid (structure II).
U.S. Pat. No. 4,628,056 teaches a method of making 1,3 bis(methoxymethyl)-5,5-diphenyl barbituric acid (also called N,N′-bis(methoxymethyl)-5,5-diphenyl barbituric acid) by dissolving diphenyl barbituric acid in cooled dimethylformamide, adding sodium hydride, then adding chloromethyl methyl ether. Chloromethyl methyl ether has been widely used to alkylate with a methoxymethylene function. However, it is highly toxic and regulated as a carcinogen. It is extremely volatile and flammable under exothermic reaction conditions, and alternatives to its use are strongly desirable.
Almost three decades ago, methoxymethyl methanesulfonate was identified as an agent for alkylating some alcohols and amines in a self-catalyzing reaction. Karger et al., J.A.C.S. 91:5663 (1969). With amines, the reaction was complex and led to salts, dimers, and other side products being formed. This method has not been applied to alkylation of ureides, or imides, for which there are major differences in electron availability at nitrogen.
SUMMARY OF THE INVENTION
The inventive method avoids the use of volatile, carcinogenic chloromethyl methyl ether, replacing that reagent with a more reactive, less volatile alternative which may be generated in situ (without risk to the operator).
The invention solves a previously unrecognized problem limiting the applicability of methoxymethanesulfonate alkylation to alcohols and amines. Ureides are much less basic than amines, so a different method for oxyalkylation is required. This invention differs from the method of Karger et al. by using a ureide, a non-aqueous basic catalyst, and an aprotic solvent, modifications which were not previously known or suggested. The inventive method allows use of a variety of sulfonates to prepare a broad variety of oxyalkylated ureides, some not previously known. The simplicity and convenience of the invention provide advantages that were not previously appreciated.
A method of N-alkoxyalkylating ureides according to the invention comprises reacting a ureide of structure I with an alkylating agent of structure III in the presence of a basic catalyst in an aprotic reaction medium. The alkylating agent III may be combined directly with the ureide, or the method may include reacting in situ a mixed anhydride of acetic acid and a sulfonic acid with a dialkoxymethane to provide the alkylating agent III. The method preferably involves isolating the resultant N-alkoxyalkylated ureide.
Preferably, the ureide is a 5,5-disubstituted barbituric acid, phenytoin, glutethimide, or ethosuximide. The alkylating agent may be methoxymethyl methanesulfonate, methoxymethyl benzenesulfonate, or methoxymethyl p-toluenesulfonate. The base may be selected from sodium hydride, triethyl amine, and di-isopropyl ethyl amine.
When the process includes the step of reacting a dialkoxymethane and a mixed acetic sulfonic anhydride to produce the resulting ester of the sulfonic acid, that reaction may be carried out in the same vessel as the following reaction with the ureide (done sequentially).
A preferred process comprises N-alkylating 5,5-diphenyl-barbituric acid with a reagent selected from the group consisting of methoxymethyl methanesulfonate, methoxymethyl benezenesulfonate, and methoxymethyl p-toluenesulfonate, in the presence of di-isopropyl ethyl amine and isolating the resultant N,N′-bismethoxymethyl-5,5-diphenyl-barbituric acid.
The invention also contemplates the novel compounds N-methoxymethyl-5,5-diphenyl-barbituric acid, N-methoxymethyl ethosuximide and N-methoxymethyl glutethimide, methods of making them, and a method comprising administering to a patient an effective amount of a pharmaceutical agent selected from the group consisting of N-methoxymethyl-5,5-diphenyl-barbituric acid, N-methoxymethyl ethosuximide and N-methoxymethyl glutethimide.
Further objectives and advantages will become apparent from a consideration of the description and examples.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In describing preferred embodiments of the present invention illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
The reagent class which possesses the desirable N-alkylating properties is characterized as compounds of structure III
where the R groups are preferably as follows:
R
3
=H, lower alkyl, phenyl, or substituted phenyl
R
4
=H, lower alkyl, phenyl, or substituted phenyl
R
5
=lower alkyl, phenyl, or substituted phenyl
Particular examples of structures belonging to this class are listed in Table 1:
TABLE 1
Compound III
R
3
R
4
R
5
1. methoxymethyl methanesulfonate
H
H
CH
3
2. ethoxymethyl methanesulfonate
CH
3
H
CH
3
3. benzyloxymethyl methanesulfonate
phenyl
H
CH
3
4. methoxymethyl ethanesulfonate
H
H
C
2
H
5
5. methoxymethyl benzenesulfonate
H
H
phenyl
6. methoxymethyl p-toluenesulfonate
H
H
tolyl
7. methoxylbenzylidene methanesulfonate
H
phenyl
CH
3
8. methoxyethylidene methanesulfonate
H
CH
3
CH
3
A particularly preferred reagent is methoxymethyl methanesulfonate.
The ureides which have been shown to be alkylated belong to the family of compounds having structure I:
which may be linear (with R
1
and R
2
being alkyl, aryl, or arylalkyl), or cyclic (R
1
and R
2
bonded to form a ring). Examples of these ureides include those listed above and:
glutethimide (3-ethyl-3-phenyl-piperidine-2,6-dione)
phenytoin (5,5-diphenyl-2,4-imidazolidinedione)
ethosuximide (3-ethyl-3-methyl-2,5-pyrrolidinedione)
5,5-diphenylbarbituric acid
5-phenyl-5-ethylbarbituric acid
5,5-diethylbarbituric acid
The preferred family of reactant ureides is the barbituric acids disubstituted at 5, as in structure IV with the R groups preferably being the same or different alkyl or aryl groups, and most preferably with both R groups being phenyl.
Analogous products resulting from the process of the invention, where 5,5-diphenyl-barbituric acid is a substrate, include:
N,N′-bisethoxymethyl derivative using reagent 2 of Table 1.
N,N′-bismethoxybenzylidene derivative using reagent 7 of Table 1.
N,N′-bismethoxyethylidene derivative using reagent 8 of Table 1.
N,N′-bisbenzyloxymethyl derivative using reagent 3 of Table 1.
The N-methoxymethyl derivative of 5,5-diphenylbarbituric acid (Formula IX) may be prepared by the process of this invention.
The substrate 5,5-diphenylbarbituric acid is converted to its di-anion salt with a very strong base (as strong as a hydride, e.g. NaH) and then one equivalent is added of the alkoxyalkylating agent, reagent 1 of Table 1. N-methoxymethyl-5,5-diphenylbarbituric acid is obtained by optimizing the reaction to favor monosubstitution. For example, an excess of the very strong base NaH is used, greater than two molar equivalents per mole of the ureide. The monosubstituted product is separated by chromatography or other conventional methods and may be characterized by melting point and nuclear magnetic resonance.
Pharmaceutically-effective salts of the alkylated ureides are also contemplated within the scope of the inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

N-methoxymethyl-5,5-diphenylbarbituric acid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with N-methoxymethyl-5,5-diphenylbarbituric acid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and N-methoxymethyl-5,5-diphenylbarbituric acid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096445

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.