Mycopesticides

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Biocides; animal or insect repellents or attractants

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S084000, C424S093500, C424S708000, C424S405000, C424S407000, C424S409000, C424S413000, C424S418000, C424S488000, C435S179000, C435S254100

Reexamination Certificate

active

06660290

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the use of fungal mycelium as a biopesticide. More particularly, the invention relates to the control and destruction of insects, including carpenter ants, fire ants, termites, flies, beetles, cockroaches and other pests, using fungal mycelia as both attractant and infectious agent.
2. Description of the Related Art
The use of chemical pesticides is the cause of many secondary environmental problems aside from the death of the targeted pest. Poisoning of soil and underlying aquifers may occur, along with pollution of surface waters as a result of runoff. Increases in cancer, allergies, immune disorders, neurological diseases and even death in agricultural workers and consumers have been attributable to the use of pesticides. Chemical pesticides are increasingly regulated and even banned as a health risk to citizens. Communities are increasingly in need of natural solutions to pest problems.
Compounding these problems, many pest type or vermin insects have developed a broad spectrum of resistance to chemical pesticides, resulting in few commercially available pesticides that are effective without thorough and repeated applications. In addition to being largely ineffective and difficult and costly to apply, chemical pesticides present the further disadvantage of detrimental effects on non-target species, resulting in secondary pest outbreaks. It is believed that widespread use of broad-spectrum insecticides often destroys or greatly hampers the natural enemies of pest species, and pest species reinfest the area faster than non-target species, thereby allowing and encouraging further pest outbreaks. There is therefore a particular need for natural alternatives.
Biological control agents have been tried with varying results. Bacteria such as
Bacillus thurigenesis
are used with some success as a spray on plants susceptible to infestation with certain insects. Fungal control agents are another promising group of insect pathogens suitable for use as biopesticides for the control of insects. However, limited availability, cost and reliability have hampered the development of such fungal control agents. Host range and specificity has been a problem as well as an advantage; a fungal pathogen that is virulent and pathogenic to one insect species may be ineffective against other species, even those of the same genus. However, some success has been demonstrated.
The typical lifecycle of a pathogenic fungi control agent involves adhesions of the spore(s) to the host insect cuticle, spore germination and penetration of the cuticle prior to growth in the hemocoel, death, saprophytic feeding and hyphal reemergence and sporulation. For example, U.S. Pat. No. 4,925,663 (1990) to Stimac discloses
Beauveria bassiana
used to control fire ants (Solenopsis). Rice, mycelia and spores (conidia) mixture may be applied to fire ants or used as a bait and carried down into the nest, thereby introducing spores. U.S. Pat. No. 4,942,030 (1990) to Osborne discloses control of whiteflies and other pests with
Paecilomyces fumosoroseus
Apopka spore conidia formulations. The
Paecilomyces fungus
is also useful for control of Diptera, Hymenoptera, Lepidoptera, Bemisia, Dialeurodes, Thrips, Spodoptera (beet army worm), Leptinotarsa (Colorado potato beetle), Lymantria (Gypsy moth), Tetranychus, Frankliniella, Echinothrips, Planococcus (
Citrus mealybug
) and Phenaococcus (
Solanum mealybug
). U.S. Pat. No. 5,165,929 (1992) to Howell discloses use of
Rhizopus nigricans
and other fungus in the order Mucorales as a fungal ant killer. U.S. Pat. No. 5,413,784 (1995) to Wright et al. discloses compositions and processes directed to the use of
Beauveria bassana
to control boll weevils, sweet potato whiteflies and cotton fleahoppers. U.S. Pat. No. 5,683,689 (1997) to Stimac et al. discloses conidial control of cockroaches, carpenter ants, and pharaoh ants using strains of
Beauveria bassana
grown on rice. U.S. Pat. No. 5,728,573 (1998) to Sugiura et al. discloses germinated fungi and rested spore termiticides of entomogenous fungus such as
Beauveria brongniartii, Beauveria bassana, Beauveria amorpha, Metarhizium anisopliae
and
Verticillium lecanii
for use against insects such as termites, cockroaches, ants, pill wood lice, sow bugs, large centipedes, and shield centipedes. U.S. Pat. No. 5,989,898 (1999) to Jin et al. is directed to packaged fungal conidia, particularly Metarhizium and Beauveria. The scientific journal literature also discusses similar uses of conidial preparations.
One disadvantage to such approaches is that the fungal lifecycle may be particularly sensitive to and dependent upon conditions of humidity, moisture and free water, particularly during the stages of germination, penetration of the cuticle prior to growth, and hyphal reemergence and sporulation after death of the insect.
Another continuing problem with existing techniques has been inconsistent bait acceptance. Baits are often bypassed and left uneaten. Such may be a particular problems with insects such as termites, as opposed to house ants and cockroaches, because it is usually not possible to remove competing food sources for termites. Attractants and feeding stimulants have sometimes increased the consistency of bait acceptance, but such increases cost and complexity, and there remains a continuing need for improved baits with improved bait acceptance.
A particular disadvantage with conidial fungal insect preparations becomes apparent from U.S. Pat. No. 5,595,746 (1997) to Milner et al. for termite control.
Metarhizium anisopliae
conidia are disclosed and claimed as a termite repellant in uninfested areas and as a termite control method in infested areas. The difficulties of utilizing conidia or conidia/mycelium as a bait and/or contact insecticide are readily apparent when considering that conidia are effective as an insect repellant to termites and are repellant in varying degrees to most or all targeted insect pests. A repellant, of course, does not facilitate use as a bait or contact insecticide. This may be a factor in explaining why fungal insecticides have all too often proven more effective in the laboratory, where conidia may be unavoidable in the testing chamber or even directly applied to insects, than in the field.
U.S. Pat. No. 4,363,798 (1982) to D'Orazio is for termite baits utilizing brown rot fungus as an attractant and toxicant boron compounds in mixtures effectively sufficient to kill termites without creating bait shyness. Brown-rot inoculated wood which is ground and mixed with cellulosic binder and boron compounds. Such an approach has the disadvantage of utilizing toxic boron compounds. In addition, the cultured mycelium must be further processed.
There is, therefore, a continuing need for enhancing the effectiveness of entomopathogenic (capable of causing insect disease) fungal products and methods. There is also a need for enhancing the attractiveness of such fungal pesticides to insects. There is also a need for improved packaging, shipping and delivery methods.
In view of the foregoing disadvantages inherent in the known types of fungal biocontrol agents, the present invention provides improved fungal biocontrol agents and methods of using such agents.
SUMMARY OF THE INVENTION
The present invention offers an environmentally benign approach to insect control by attracting the insects who ingest latent preconidial mycelium (which may be fresh, dried or freeze-dried) which then infects the host. The preconidial mycelium is both the attractant and the pathogenic agent. The infected insects carrying the fungal hyphae become a vector back to the central colony, further dispersing the fungal pathogen. Mycelium is grown in pure culture using standard fermentation techniques for in vitro propagation. The fermented mycelia is diluted and transferred into a sterilized grain or a mixture of sterilized grains. Once inoculated, the fermented mycelia matures to a state prior to conidia formation. The preconidial mycelium ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mycopesticides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mycopesticides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mycopesticides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184014

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.