Mutant proteins having lower allergenic response in humans...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S263000, C435S264000, C426S063000

Reexamination Certificate

active

06218165

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates to proteins which produce lower allergenic response in humans exposed to such proteins, and an assay predictive of such response. More specifically, the present invention relates to a novel improved protein mutant which produces very low allergenic response in humans sensitized to that protein through exposure compared to the precursor of such protein mutant.
B. State of the Art
Proteins used in industrial, pharmaceutical and commercial applications are of increasing prevalence. As a result, the increased exposure due to this prevalence has been responsible for some safety hazards caused by the sensitization of certain persons to those peptides, whereupon subsequent exposure causes extreme allergic reactions which can be injurious and even fatal. For example, proteases are known to cause dangerous hypersensitivity in some individuals. As a result, despite the usefulness of proteases in industry, e.g., in laundry detergents, cosmetics, textile treatment etc. . . . , and the extensive research performed in the field to provide improved proteases which have, for example, more effective stain removal under detergency conditions, the use of proteases in industry has been problematic due to their ability to produce a hypersensitive allergenic response in some humans.
Much work has been done to alleviate these problems. Among the strategies explored to reduce immunogenic potential of protease use have been improved production processes which reduce potential contact by controlling and minimizing workplace concentrations of dust particles or aerosol carrying airborne protease, improved granulation processes which reduce the amount of dust or aerosol actually produced from the protease product, and improved recovery processes to reduce the level of potentially allergenic contaminants in the final product. However, efforts to reduce the allergenicity of protease, per se, have been relatively unsuccessful. Alternatively, efforts have been made to mask epitopes in protease which are recognized by immunoglobulin E (IgE) in hypersensitive individuals (PCT Publication No. WO 92110755) or to enlarge or change the nature of the antigenic determinants by attaching polymers or peptides/proteins to the problematic protease.
When an adaptive immune response occurs in an exaggerated or inappropriate form, the individual experiencing the reaction is said to be hypersensitive. Hypersensitivity reactions are the result of normally beneficial immune responses acting inappropriately and sometimes cause inflammatory reactions and tissue damage. They can be provoked by many antigens; and the cause of a hypersensitivity reaction will vary from one individual to the next. Hypersensitivity does not normally manifest itself upon first contact with the antigen, but usually appears upon subsequent contact. One form of hypersensitivity occurs when an IgE response is directed against innocuous environmental antigens, such as pollen, dust-mites or animal dander. The resulting release of pharmacological mediators by IgE-sensitized mast cells produces an acute inflammatory reaction with symptoms such as asthma or rhinitis.
Nonetheless, a strategy comprising modifying the IgE sites will not generally be successful in preventing the cause of the initial sensitization reaction. Accordingly, such strategies, while perhaps neutralizing or reducing the severity of the subsequent hypersensitivity reaction, will not reduce the number or persons actually sensitized. For example, when a person is known to be hypersensitive to a certain antigen, the general, and only safe, manner of dealing with such a situation is to isolate the hypersensitive person from the antigen as completely as possible. Indeed, any other course of action would be dangerous to the health of the hypersensitive individual. Thus, while reducing the danger of a specific protein for a hypersensitive individual is important, for industrial purposes it would be far more valuable to render a protein incapable of initiating the hypersensitivity reaction in the first place.
T-lymphocytes (T-cells) are key players in the induction and regulation of immune responses and in the execution of immunological effector functions. Specific immunity against infectious agents and tumors is known to be dependent on these cells and they are believed to contribute to the healing of injuries. On the other hand, failure to control these responses can lead to auto aggression. In general, antigen is presented to T-cells in the form of antigen presenting cells which, through a variety of cell surface mechanisms, capture and display antigen or partial antigen in a manner suitable for antigen recognition by the T-cell. Upon recognition of a specific epitope by the receptors on the surface of the T-cells (T-cell receptors), the T-cells begin a series of complex interactions, including proliferation, which result in the production of antibody by B-cells. While T-cells and B-cells are both activated by antigenic epitopes which exist on a given protein or peptide, the actual epitopes recognized by these mononuclear cells are generally not identical. In fact, the epitope which activates a T-cell to initiate the creation of immunologic diversity is quite often not the same epitope which is later recognized by B-cells in the course of the immunologic response. Thus, with respect to hypersensitivity, while the specific antigenic interaction between the T-cell and the antigen is a critical element in the initiation of the immune response to antigenic exposure, the specifics of that interaction, i.e., the epitope recognized, is often not relevant to subsequent development of a full blown allergic reaction.
PCT Publication No. WO 96140791 discloses a process for producing polyalkylene oxide-polypeptide conjugates with reduced allergenicity using polyalkylene oxide as a starting material.
PCT Publication No. WO 97130148 discloses a polypeptide conjugate with reduced allergenicity which comprises one polymeric carrier molecule having two or more polypeptide molecules coupled covalently thereto.
PCT Publication No. WO 96/17929 discloses a process for producing polypeptides with reduced allergenicity comprising the step of conjugating from 1 to 30 polymolecules to a parent polypeptide.
PCT Publication No. WO 92/10755 discloses a method of producing protein variants evoking a reduced immunogenic response in animals. In this application, the proteins of interest, a series of proteases and variants thereof, were used to immunized rats. The sera from the rats was then used to measure the reactivity of the polyclonal antibodies already produced and present in the immunized sera to the protein of interest and variants thereof. From these results, it was possible to determine whether the antibodies in the preparation were comparatively more or less reactive with the protein and its variants, thus permitting an analysis of which changes in the protein are likely to neutralize or reduce the ability of the Ig to bind. From these tests on rats, the conclusion was arrived at that changing any of subtilisin 309 residues corresponding to 127, 128, 129, 130, 131, 151, 136, 151, 152, 153, 154, 161, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 186, 193, 194, 195, 196, 197, 247, 251, 261 will result in a change in the immunological potential.
PCT Publication No. WO 94/10191 discloses low allergenic proteins comprising oligomeric forms of the parent monomeric protein, wherein the oligomer has substantially retained its activity.
The prior art has provided methods of reducing the allergenicity of certain proteins and identification of epitopes which cause allergic reactions in some individuals, the assays used to identify these epitopes generally involving measurement of IgE and IgG antibody in blood sera previously exposed to the antigen. Nonetheless, once an Ig reaction has been initiated, sensitization has already occurred. Accordingly, there is a need for a method of determining epitopes which cause sensitization in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mutant proteins having lower allergenic response in humans... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mutant proteins having lower allergenic response in humans..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mutant proteins having lower allergenic response in humans... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2514983

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.