Mutant having uracil phosphoribosyl transferase activity

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252300, C435S325000, C435S455000, C435S456000, C435S471000, C424S093200, C514S04400A, C536S023100, C536S023200, C536S023400, C536S023740

Reexamination Certificate

active

06596533

ABSTRACT:

The present invention relates to a polypeptide which possesses uracil phosphoribosyl transferase (UPRTase) activity and which is derived from a native UPRTase by one or more residues of said UPRTase being mutated. The invention also relates to a nucleotide sequence which encodes this mutant UPRTase, to a vector for expressing this latter mutant, to a viral particle and a host cell, and to a composition which comprises them. Finally, the invention is also directed towards their therapeutic use and to a method of treatment which implements them. The present invention is particularly useful, within the context of suicide gene therapy, for an application with respect, in particular, to proliferative and infectious diseases.
Gene therapy is defined as being the transfer of genetic information into a host cell or organism. The first protocol applied to man was initiated in the United States, in September 1990, on a patient who was genetically immunodeficient on account of a mutation which affected the gene encoding Adenine Deaminase (ADA). The relative success of this first experiment encouraged the development of this approach for a variety of diseases, including both genetic diseases (with the aim of correcting the malfunction of a defective gene) and acquired diseases (cancers, infectious diseases, such as AIDS, etc.). This technology has experienced a large number of developments since then, including “suicide gene” therapy, which uses genes whose expression products are able to transform an inactive substance (prodrug) into a cytotoxic substance, thereby giving rise to cell death. In 1992, several groups demonstrated the relevance of this novel approach for treating tumors and inhibiting dissemination of the HIV virus, which is responsible for AIDS.
In this respect, the gene encoding the herpes simplex type 1 virus thymidine kinase (HSV-1 TK) constitutes the prototype of the suicide genes (Caruso et al., 1993, Proc. Natl. Acad. Sci. USA 90, 7024-7028; Culver et al., 1992, Science 256, 1550-1552; Ram et al., 1997, Nat. Med. 3, 1354-1361). While the TK polypeptide is not toxic as such, it catalyzes the transformation of nucleoside analogues such as acyclovir or ganciclovir (GCV). The modified nucleosides are incorporated into the DNA chains which are in the process of elongation, inhibiting cell division as a consequence. A large number of suicide gene/prodrug pairs are currently available. Those which may more specifically be mentioned are rat cytochrome p450 and cyclophosphophamide [sic] (Wei et al., 1994, Human Gene Therapy 5, 969-978),
Escherichia coli
(
E. Coli
) purine nucleoside phosphorylase and 6-methylpurine deoxyribonucleoside (Sorscher et al., 1994, Gene Therapy 1, 223-238),
E. coli
guanine phosphoribosyl transferase and 6-thioxanthine (Mzoz and Moolten, 1993, Human Gene Therapy 4, 589-595) and cytosine deaminase (CDase) and 5-fluorocytosine (5FC).
CDase is involved in the pyrimidine metabolic pathway by which exogenous cytosine is transformed into uracil by means of a hydrolytic deamination. While CDase activities have been demonstrated in prokaryotes and lower eukaryotes (Jund and Lacroute, 1970, J. Bacteriol. 102, 607-615; Beck et al., 1972, J. Bacteriol. 110, 219-228; De Haan et al., 1972, Antonie van Leeuwenhoek 38, 257-263; Hoeprich et al., 1974, J. Inf. Dis. 130, 112-118; Esders and Lynn, 1985, J. Biol. Chem. 260, 3915-3922), they are not present in mammals (Koechlin et al., 1966, Biochem Pharmacol. 15, 435-446; Polak et al., 1976, Chemotherapy 22, 137-153). The
Saccharomyces cerevisiae
(
S. cerevisiae
) FCY1 and the
E. coli
codA genes, which respectively encode the CDase of these two organisms, are known and their sequences have been published (EP 402 108; Erbs et al., 1997, Curr. Genet. 31, 1-6; WO93/01281).
CDase also deaminates an analogue of cytosine, i.e. 5-fluorocytosine (5-FC), thereby forming 5-fluorouracil (5-FU), which is a compound which is highly cytotoxic when it is converted into 5-fluoro-UMP (5-FUMP). Cells which lack CDase activity, either because of a mutation which inactivates the gene encoding the enzyme or because they are naturally deficient in this enzyme, as are mammalian cells, are resistant to 5-FC (Jund and Lacroute, 1970, J. Bacteriol, 102, 607-615; Kilstrup et al., 1989, J. Bacteriol. 1989 171, 2124-2127). By contrast, mammalian cells into which the sequences encoding CDase activity were transferred became sensitive to 5-FC (Huber et al., 1993, Cancer Res. 53, 4619-4626; Mullen et al., 1992, Proc. Natl. Acad. Sci. USA 89, 33-37; WO 93/01281). In addition, the neighboring, untransformed cells also become sensitive to 5-FC (Huber et al., 1994, Proc. Natl. Acad. Sci. USA 91, 8302-8306). This phenomenon, which is termed a bystander effect, is due to the cells which are expressing the CDase activity secreting 5-FU, which then intoxicates the neighboring cells by straightforward diffusion across the plasma membrane. This property of 5-FU in diffusing passively represents an advantage as compared with the tk/GCV reference system, where the bystander effect requires there to be contact with the cells which are expressing tk (Mesnil et al., 1996, Proc. Natl. Acad. Sci. USA 93, 1831-1835). All the advantages which CDase offers within the context of gene therapy, in particular anticancer gene therapy, can therefore be readily understood.
However, the sensitivity to 5-FC varies a great deal depending on the cell lines employed. For example, a low degree of sensitivity is observed in human tumor cell lines PANC-1 (pancreatic carcinoma) and SK-BR-3 (breast adenocarcinoma) which have been transduced with a retrovirus expressing the
E. coli
coda gene (Harris et al., 1994, Gene Therapy 1, 170-175). This undesirable phenomenon could be explained by the 5-FU which is formed by the enzymic action of the CDase either not being converted, or only being converted at a low level, into cytotoxic 5-FUMP. This step, which is normally effected in mammalian cells by orotate phosphorybosyl [sic] transferase (Peters et al., 1991, Cancer 68, 1903-1909), may be absent in particular tumors and thereby render the CDase-based gene therapy inoperative.
In prokaryotes and lower eukaryotes, uracil is transformed into UMP by the action of uracil phosphoribosyl transferase (UPRTase). This enzyme also converts 5-FU into 5-FUMP. Thus, furl mutants of the yeast
S. cerevisiae
are resistant to high concentrations of 5-FU (10 mM) and 5-FC (10 mM) because, with there being no UPRTase activity, the 5-FU which arises from the deamination of the 5-FC by CDase is not transformed into cytotoxic 5-FUMP (Jund and Lacroute, 1970, J. Bacteriol. 102, 607-615). The upp and FUR1 genes, which encode
E. coli
and
S. cerevisiae
UPRTase, respectively, have been cloned and sequenced (Andersen et al., 1992, Eur. J. Biochem. 204, 51-56; Kern et al., 1990, Gene 88, 149-157).
In order to remedy these drawbacks, the prior art document WO-A-96/16183 recommends using a fusion protein which encodes a two-domain enzyme possessing CDase and UPRTase activities, and demonstrates in vitro that the transfer of a hybrid codA::upp or FCY1::FUR1 gene, carried by an expression plasmid, increases the sensitization of transfected B16 cells to 5-FC.
The present invention is an improvement of the earlier technique in that it uses a mutated FUR1 gene which encodes a UPRTase which is deleted in its N-terminal part. The present invention results from the observation that, after the initiating ATG codon, the FUR1 gene contains a second ATG codon encoding methionine in position 36 of the native protein.
An FUR1 gene has now been constructed which lacks 105 nucleotides at the 5′ end of the coding part, thereby making it possible to synthesize a UPRTase from which the first 35 N-terminal residues have been deleted and which starts with the methionine in position 36 in the native protein. It has been shown that the expression product of the mutant gene, designated FUR1&Dgr;105, is able to complement an
S. cerevisiae
furl mutant, thereby demonstrating that it is functional. Surprisin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mutant having uracil phosphoribosyl transferase activity does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mutant having uracil phosphoribosyl transferase activity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mutant having uracil phosphoribosyl transferase activity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.