Musical instrument digital interface with speech capability

Music – Instruments – Electrical musical tone generation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S645000, C084S649000

Reexamination Certificate

active

06191349

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to digital interfaces for musical instruments, and specifically to methods and devices for representing musical notes using a digital interface.
BACKGROUND OF THE INVENTION
MIDI (Musical Instrument Digital Interface) is a standard known in the art that enables digital musical instruments and processors of digital music, such as personal computers and sequencers, to communicate data about musical tones. Information regarding implementing the MIDI standard is widely available, and can be found, for instance, in a publication entitled “Official MIDI Specification” (MIDI Manufacturers Association, La Habra, Calif.), which is incorporated herein by reference.
Data used in the MIDI standard typically include times of depression and release of a specified key on a digital musical instrument, the velocity of the depression, optional post-depression pressure measurements, vibrato, tremolo, etc. Analogous to a text document in a word processor, a performance by one or more digital instruments using the MIDI protocol can be processed at any later time using standard editing tools, such as insert, delete, and cut-and-paste, until all aspects of the performance are in accordance with the desires of a user of the musical editor.
Notably, a MIDI computer file, which contains the above-mentioned data representing a musical performance, does not contain a representation of the actual wave forms generated by an output module of the original performing musical instrument. Rather, the file may contain an indication that, for example, certain musical notes should be played by a simulated acoustic grand piano. A MIDI-compatible output device subsequently playing the file would then retrieve from its own memory a representation of an acoustic grand piano, which representation may be the same as or different from that of the original digital instrument. The retrieved representation is used to generate the musical wave forms, based on the data in the file.
MIDI files and MIDI devices which process MIDI information designate a desired simulated musical instrument to play forthcoming notes by indicating a patch number corresponding to the instrument. Such patch numbers are specified by the GM (General MIDI) protocol, which is a standard widely known and accepted in the art. The GM protocol specification is available from the International MIDI Association (Los Angeles, Calif.), and was originally described in an article, “General MIDI (GM) and Roland's GS Standard,” by Chris Meyer, in the August, 1991, issue of
Electronic Musician,
which is incorporated herein by reference.
According to GM, 128 sounds, including standard instruments, voice, and sound effects, are given respective fixed patch numbers, e.g., Acoustic Grand Piano =1; Violin =41; Choir Aahs=53; and Telephone Ring=125. When any one of these patches is selected, that patch will produce qualitatively the same type of sound, from the point of view of human auditory perception, for any one key on the keyboard of the digital musical instrument as for any other key. For example, if the Acoustic Grand Piano patch is selected, then playing middle C and several neighboring notes produces piano-like sounds which are, in general, similar to each other in tonal quality, and which vary essentially only in pitch. (In fact, if the musical sounds produced were substantially different in any respect other than pitch, the effect on a human listener would be jarring and undesirable.)
MIDI allows information governing the performance of 16 independent simulated instruments to be transmitted effectively simultaneously through 16 logical channels defined by the MIDI standard. Of these channels, Channel 10 is uniquely defined as a percussion channel which, in contrast to the patches described hereinabove, has qualitatively distinct sounds defined for each successive key on the keyboard. For example, depressing MIDI notes
40
,
41
, and
42
yields respectively an Electric Snare, a Low Floor Tom, and a Closed Hi-Hat. MIDI cannot generally be used to set words to music. It is known in the art, however, to program a synthesizer, such as the Yamaha PSR310, such that depressing any key (i.e., choosing any note) within one octave yields a simulated human voice saying “ONE,” with the pitch of the word “ONE” varying responsive to the particular key pressed. Pressing keys in the next higher octave yields the same voice saying “TWO,” and this pattern is continued to cover the entire keyboard.
Some MIDI patches are known in the art to use a “split-keyboard” feature, whereby notes below a certain threshold MIDI note number (the “split-point” on the keyboard) have a first sound (e.g., organ), and notes above the split-point have a second sound (e.g., flute). The split-keyboard feature thus allows a single keyboard to be used to reproduce two different instruments.
SUMMARY OF THE INVENTION
It is an object of some aspects of the present invention to provide improved devices and methods for utilizing digital music processing hardware.
It is a further object of some aspects of the present invention to provide devices and methods for generating human voice sounds with digital music processing hardware.
In preferred embodiments of the present invention, an electronic musical device generates qualitatively distinct sounds, such as different spoken words, responsive to different musical notes that are input to the device. The pitch and/or other tonal qualities of the generated sounds are preferably also determined by the notes. Most preferably, the device is MIDI-enabled and uses a specially-programmed patch on a non-percussion MIDI channel to generate the distinct sounds. The musical notes may be input to the device using any suitable method known in the art. For example, the notes may be retrieved from a file, or may be created in real-time on a MIDI-enabled digital musical instrument coupled to the device.
In some preferred embodiments of the present invention, the distinct sounds comprise representations of a human voice which, most preferably, sings the names of the notes, such as “Do/Re/Mi/Fa/Sol/La/Si/Do” or “C/D/E/F/G/A/B/C,” responsive to the corresponding notes generated by the MIDI instrument. Alternatively, the voice may say, sing, or generate other words, phrases, messages, or sound effects, whereby any particular one of these is produced responsive to selection of a particular musical note, preferably by depression of a pre-designated key.
Additionally or alternatively, one or more parameters, such as key velocity, key after-pressure, note duration, sustain pedal activation, modulation settings, etc., are produced or selected by a user of the MIDI instrument and are used to control respective qualities of the distinct sounds.
Further additionally or alternatively, music education software running on a personal computer or a server has the capability to generate the qualitatively distinct sounds responsive to either the different keys pressed on the MIDI instrument or different notes stored in a MIDI file. In some of these preferred embodiments of the present invention, the software and/or MIDI file is accessed from a network such as the Internet, preferably from a Web page. The music education software preferably enables a student to learn solfege (the system of using the syllables, “Do Re Mi . . . ” to refer to musical tones) by playing notes on a MIDI instrument and hearing them sung according to their respective musical syllables, or by hearing songs played back from a MIDI file, one of the channels being set to play a specially-programmed solfege patch, as described hereinabove.
In some preferred embodiments of the present invention, the electronic musical device is enabled to produce clearly perceivable solfege sounds even when a pitch wheel of the device is being used to modulate the solfege sounds's pitch or when the user is rapidly playing notes on the device. Both of these situations could, if uncorrected, distort the solfege sounds or render them incomprehen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Musical instrument digital interface with speech capability does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Musical instrument digital interface with speech capability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Musical instrument digital interface with speech capability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2575902

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.