Musical-instrument controller with triad-forming...

Music – Instruments – General features

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S4710SR

Reexamination Certificate

active

06670535

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to musical instruments and, more particularly, to an array keyboard controller. A major objective of the invention is to provide a flexible yet compact musical-instrument controller that permits convenient fingerings of common note combinations.
Developments in electronic music synthesis have open up a wide palette of new and intriguing timbres, as well as made it possible to emulate almost any acoustic instrument. However, controllers for accessing these new sounds have, for the most part, been limited to emulating acoustic instruments, with piano-style keyboards dominating synthesizer applications.
With rare exception, piano keyboards have 88 keys for playing a 7⅓ octave range. A vast quantity of music has been written for the 88-key piano. Understandably, 88-key synthesizer controllers are appealing as they allow access to this music, plus the ability to vary the timbre with which music is played. Pianos, of course, are not portable instruments, but some portable 88-key synthesizer controllers are available. Still they are heavier and more bulky than desired for those who would take their music with them.
Arranger keyboards are piano-style keyboards that use chord recognition in generating auto-accompaniment patterns. The most popular arranger keyboards have 61 keys, typically divided so that an about 1.5-octave lower range is used for chord recognition, while an about 3.5-octave upper range handles melody and other parts. While the available note range is more limited than that of a conventional keyboard, the patterns can include notes outside the nominal keyboard range, permitting the full piano-keyboard range to be sounded.
In addition, arranger keyboards often simplify the fingering of note combinations. For example, many arranger keyboards allow certain 3-note chords (typically major triads) to be triggered with one finger by hitting the root in the chord zone. In many cases, minor chords can be triggered using only two fingers (e.g., hitting the root and the minor).
On the other hand, arranger keyboards pose a problem when a player wants to intermix single-finger chord triggering and base notes in the chord zone. Typically, the musician must resort to turning single-finger chords off (if this is possible) and playing three-note chords. A similar problem exists when the player wants to play intervals in the chord zone without triggering a chord change. Modern chord recognition schemes have various ways of dealing with these limitations, but all make assumptions concerning what the musician “probably” wants to do. When the assumption is wrong, the results are typically undesirable. In addition, there are times when most players want to play without auto-accompaniment—but, then, the missing (88-61=) 27 keys often make a difference. Furthermore, while 61-keys makes for a smaller form factor than 88-keys, it is still larger than desired for portability.
Array keyboards provide a large number of keys in a relatively compact arrangment. For example, all the notes in a piano and then some can be represented in a 12″×8″ array of 1″ inch square keys. Obviously, this addresses issues of portability, but there is a challenge to arrange the keys for optimal playability. For example, if each row of the array is a separate octave, so that each column contains octave transpositions for a given note, (e.g., A
−4
, A
−3
, A
−2
, A
−1
, A
0
, A
+1
, A
+2
, and A
+3
) certain familiar note combinations can be difficult to finger.
The Z-Board available from Starr Labs (www.starrlabs.com) arranges array rows in fourths, in a manner similar to convention guitar tuning (which uses four fourths and one major third). In fact, Starr Laboratories also advertises a G-Board that uses standard guitar tuning. Conveniently, common guitar-like fingerings are possible. However, this 12-row by 23-column array does not extend over the entire conventional piano range. While it can be retuned to allow a wider range of pitches, the convenient and familiar 4ths fingerings are sacrificed in the process.
Starr Labs also discloses “Wilson Generalized Keyboards” for microtuning applications. One board is a 90×8 array of hexagonal keys, while a smaller version sports 48×6 keys. A tuning for conventional western tonalities is not disclosed at the website. These keyboards are not compact, with the smaller being comparable to a piano in keyboard length.
There are also some array keyboards systems that depart from the convention relationship between space and pitch that typifies most keyboards. The Chordboard CX10 (www.) offers easy chord selection and transposition from one key to another. While the Chordboard seems well suited for arranger-style (chord and melody) playing, it does not seem well suited for more free-form styles. In a sense, the chord emphasis becomes as much a limitation as it is an aid. The Chordboard is about 1.25 meters (49″) long, about the same as a five-octave keyboard.
The “Samchillian Tip Tip Cheree” relatistic keyboard provides a large melodic given the number of keys used. However, it is not well suited for pieces that would normally require two hands to be played on a piano. Both the Chordboard and the Relativistic keyboard impose a learning curve as they weaken the intuitive relationship between space and pitch.
What is needed is a compact musical-instrument controller that provides for a full-piano note range, and provide convenient fingering of common chords, intervals, and single notes throughout the note range.
SUMMARY OF THE INVENTION
The present invention provides for an array of note triggers that define triads at (at least some) points where three or more note triggers converge. The triads each include a major third interval and a minor third interval; both major and minor triads are provided for. For example, if note triggers that are assigned notes C, E, and G, respectively converge, they define a C major triad at the convergence point. Preferably, one note trigger will converge in a major triad at one convergence point and in a minor triad at another convergence point. Where four or more note triggers converge, more than one triad can be formed at that convergence point. In accordance with a further aspect of the invention, a triad can be triggered at a convergence point. Furthermore, third and fifth intervals can be triggered at an extended boundary. The invention provides for rows or columns of note triggers arranged in fifths so that a row or column covers an entire circle of fifths.
By placing note triggers collectively defining thirds and fifths near each other, the invention makes it convenient to trigger these common note combinations. However, the invention further provides for triggering the boundary segments and vertices for single-finger triggering of useful intervals and chords. This maximizes the convenience of playing thirds, fifths, and major and minor chords without depriving the player of access to the individual notes that make up these note combinations. For example, a player can trigger a vertex to play a triad (e.g., C-E-G) and trigger a key to trigger a single note (e.g., Bb) to trigger a four-note chord (e.g., C7). In contrast, conventional arranger keyboards typically impose a choice between single-finger chords and individual access to the notes that make up these chords.
In a more specific aspect, the invention provides a hexagonal array of hexagonal note triggers. In a hexagonal array, successive rows are staggered and successive columns are staggered. In the inventive hexagonal array, consecutive note triggers in a row are adjacent and form fifths intervals; while consecutive note triggers in a column are not adjacent (in the note array) and form chromatic (semi-tone) intervals. Accordingly, there are diagonally adjacent pairs of note triggers with one from each of two consecutive rows. In this case, diagonally adjacent pairs form third intervals. Thus a given note trigger can define fifths above a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Musical-instrument controller with triad-forming... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Musical-instrument controller with triad-forming..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Musical-instrument controller with triad-forming... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3099009

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.