Musical instrument

Music – Instruments – Stringed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S267000, C084S31200P, C084S402000, C084S403000

Reexamination Certificate

active

06787688

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of musical instruments. In particular, the present invention involves an improved musical instrument having a frame or body that is lightweight and compact. Additionally, in some embodiments, the instrument can be designed to offer unique resonance characteristics.
Musical instruments are formed having a means for producing a vibration of a fluid or magnetic field surrounding the instrument, the fluid most often being air. The vibration, when received by the human ear, is interpreted as an audible sound. In order to produce enough sound to be useful to a musician, in playing music, the instrument must have a means for harnessing the vibration or must amplify the vibration.
Further, all musical instruments have a sound generating mechanism, that produces one or typically a plurality of vibrations at a plurality of frequencies, and have a body to which the generating mechanism is attached. The sound created by a sound generating mechanism (e.g. strings, drum heads, and the like) may occasionally be comprised of a single natural frequency, but nearly always, the sound is comprised of several frequencies, with the first, or lowest, natural frequency usually being the dominant one. This lowest, first natural frequency is often referred to as the fundamental frequency. For example, a violin playing concert A pitch generates a sound spectrum comprised of vibrations at many frequencies, but wherein most of the sound energy is concentrated at 440 Hz. This lowest natural frequency is often referred to as the fundamental frequency of concert A.
In stringed instruments, for example, the body of an instrument, such as a guitar, may be hollow in order to amplify the vibrations produced by the strumming or plucking of the strings attached to the instrument. However, in order to provide a large enough cavity to produce the required amount of sound, the body portion of these devices has traditionally had to be large. Typically, one problem with a large body has been the awkwardness of the large shape of the device in use and in storage.
A solid has also traditionally been used to make an instrument body, such as a guitar. This style is comprised of a solid, typically wood, body and one or more electrical pickups used to interpret the vibration of the sound generating mechanism interpreted by the instrument for purposes of amplification. The solid body is used to provide a structure on which to mount the strings and pickups. However, since these devices are constructed of a solid body, they are typically heavy and, therefore, are undesirable for long periods of use.
A common problem with musical instruments is that the body also has its own natural frequencies and will, therefore, begin to resonate as it is affected by the vibrations emanating from the sound generating mechanism. The amplitude and spectrum of these additional body vibrations may be of a benefit to a musician, however, in some situations these vibrations may be unwanted noise or, worse, may interact with the musical tones created by the sound generating mechanism to form dead spots or hot spots within the audible range of the instrument. These body vibrations may also act to distort the audible spectrum of the sound generating mechanism.
The equation generally utilized to identify the natural frequencies of a physical thing includes the components
k
m
where k=stiffness and m=mass. In this equation, to account for multiple modes of vibration the components k and m may be matrices. The vibrational spectrum of an instrument body is what characterizes its performance. The vibrational spectrum of an instrument body also has a resonance spectrum. Resonance peaks occur as modal natural frequencies or a combination of multiple modal natural frequencies within the vibrational spectrum. The peak resonance of a body is the highest amplitude resonance measured during a resonance test.
Traditionally, it has been believed that the best sound quality could be produced if the mass of the body was high and if the stiffness of the instrument body was also high, because the instrument would be capable of a wide range of tones without a significant amount of unwanted tone produced by the instrument body itself. However, the result of this combination is an instrument body with high mass, and high stiffness that has its set of resonance peaks falling primarily within the range of fundamental frequencies of the played notes of the sound generating mechanism. The range of played notes is called the tonal range.
Most instruments still attempt to achieve the stiffness necessary to form these tones by utilizing traditionally known stiff materials, such as aluminum, wood, or carbon fiber sheets in traditional constructions. For example, a solid bodied guitar, having high stiffness, but also has high mass. However, since the mass is high to accomplish the stiffness, similarly, the instrument body absorbs and attenuates portions of the tonal range and lower harmonics of the sound generating mechanism.
It is theorized that the sound quality of an instrument is improved by minimizing the presence of modal resonance peaks of the body at frequencies within the tonal range of the sound generating mechanism. Modal resonance peaks are a result of the natural frequencies of the instrument body itself and, therefore, changes to the traditionally utilized body construction must be made to accomplish minimization of these peaks.
SUMMARY OF THE INVENTION
The present invention includes a musical instrument that is lighter in weight, and utilizes less raw material to construct than traditional instruments. Some embodiments of the present invention also provide unique resonance characteristics over prior instrument designs. Additionally, the present invention includes embodiments of a musical instrument that are constructed utilizing the improved strength and rigidity qualities of space frame technology.
Music can be generated by a wide variety of different musical instruments. One of the ways the ear distinguishes one instrument from another is by the differences in the frequency spectrum generated by those instruments. For example, as stated above, a violin playing concert A pitch generates a note in the tonal range and a sound spectrum with most of the sound energy concentrated at 440 Hz, the fundamental frequency of concert A. Similarly, a piano playing a concert A pitch also generates a note in the tonal range and a sound spectrum with most of the sound energy concentrated at 440 Hz. However, the sounds created by the two instruments can be distinguished even though the same fundamental frequency is being played. This difference is known as timbre.
Several factors allow the ear to differentiate a pitch that has been generated. The tone initiation, sometimes called attack, and the timbre are two primary factors in sound differentiation. The timbre of an instrument is generally considered to be defined by the relative magnitudes of the overtone frequencies generated by the instrument.
For two similar instruments, e.g. two violins, timbre is considered the most important method for determining the sound quality between the instruments. That is to say, the overtones and auditory frequency spectrum generated by a specific instrument become the primary method in differentiating the musical quality of similar instruments.
As outlined above, for many instruments, but primarily for stringed and percussion instruments, the spectrum of resonance frequencies that constitute the sound spectrum of the body, significantly differentiates timbre. For example, for a guitar, with the same gauge and type of strings, tuned the same way, and plucked or played the same way, the difference in musical timbre, or tone, relates directly to the instrument body holding the sound generating mechanism, in this case the strings.
Modes of body vibration and the resonance frequencies in the body vibration spectrum can be modeled by finite element analysis (FEA) or with more accuracy, by testing. A simple

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Musical instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Musical instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Musical instrument will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188621

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.