Multivariable artifact assessment

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S140000

Reexamination Certificate

active

06287328

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to an artifact assessment method and an apparatus for detecting corruption of signals by artifact using multivariable artifact analysis.
BACKGROUND OF THE INVENTION
One common problem associated with the use of measurement instruments is erroneous measurements that result from the introduction of an artifact signal into the event signal of interest. Typically a measurement instrument detects a single measured signal comprised of the event signal of interest along with some level of artifact related to one or more non-event signals. The resulting measured signal can become significantly corrupted such that it should not be relied upon as an accurate representation of the event signal. Artifact which corrupts the event signal can result from mechanical disturbances of sensors, electromagnetic interference, etc. As will be appreciated by those of skill in the art, the nature of the artifact signals will vary depending on the nature of the measuring instrument and the environmental conditions under which the measurements are taken.
One area in which the presence of artifact signals presents a potentially life-threatening problem is in the area of medical diagnostics and instrumentation. The appearance of an undetected non-event signal in a patient monitoring device could result in a clinician making an incorrect decision with respect to a patient's treatment, or, for devices that use algorithms to make decisions, could result in the device itself making an incorrect assessment of the patient's condition.
In the area of cardiac monitoring, a common-mode signal is just one type of non-event signal that can cause corruption of the measurement of the event signal of interest. Cardiac monitors measure a differential-mode signal between two or more electrodes. Typical examples of devices that measure differential-mode signal include an electrocardiograph (“ECG”) monitoring system, and defibrillator systems. These systems use a plurality of electrodes to measure a differential signal generated by the heart. In operation, the plurality of electrodes are placed advantageously on the patient. As is well known by clinicians, these differential-mode signals are of interest because they give an indication of the state of the patient's heart (e.g. normal beat pattern versus ventricular fibrillation (“VF”)).
As is well known in the art, common-mode signals (i.e. signals that appear simultaneously upon both inputs of a differential amplifier with essentially equal magnitude, frequency, and phase) can become superimposed upon the differential-mode signals of interest (e.g., the ECG signal generated by the heart) and are sometimes converted by the system into differential-mode signals themselves. As discussed in U.S. Pat. No. 5,632,280 Leyde et al., this conversion may lead to the ultimate corruption of the differential-mode signals of interest and, in the case of a defibrillator, may lead to a potentially harmful misdiagnosis of the patient's true heart condition.
In addition to common-mode signals, the event signal can be corrupted by signals resulting from mechanical movement of the electrodes. In the cardiac monitoring setting, such mechanical movement could be, for example, the result of CPR being performed on the patient. The mechanical movement of the patient's chest is transmitted to the electrodes which then superimposes that artifact signal over the event signal to produce a corrupted signal which is measured by the device.
Because the possibility of misdiagnosis has potentially serious consequences, several attempts have been made to minimize the effect of artifact in an event signal. These efforts have, by and large, been concerned with either the elimination or suppression of the artifact signals. By reducing artifact signals, the contribution of their effects on the composite signal measured by the device is similarly reduced.
In a specific example, the reduction of common-mode signals has taken several forms. The first common method is capacitance reduction. As is well known in the art, common-mode voltages induce common-mode currents inversely proportional to the total impedance around the loop between the patient, the system, and the common-mode voltage sources. To reduce common-mode currents, this impedance is made as large as possible by minimizing the capacitance between the system and its cables to the outside world.
Nevertheless, capacitance minimization has its limitations. Circuits and cabling occupy certain minimum physical areas, and capacitance can only be reduced by increasing the distance from these circuits to outside references. Outside references may be the earth, or objects outside the instrument, or may even be other parts of the same instrument that have different potential references.
For example, many medical instruments maintain “isolated” circuits connected to patients for safety reasons. These circuits maintain a local potential reference not electrically connected to other references in order to reduce accidental electrical injuries. In these cases, reducing the capacitance to such “isolated” circuits means that spacing must be maximized within the instruments between the isolated circuits and other portions of the instrument, the instrument enclosure, or objects in the outside world. However, it is also important to limit the physical size of instrumentation, so that increasing available spacing has practical limitations as a means of limiting common-mode currents.
A second major effort to reduce common-mode currents is shielding. In this case, the shields are equipotential surfaces such as metal enclosures, that are used to block the entry of electromagnetic fields into instruments and cabling. Such fields may originate, for example, from power lines, radio transmitters, or nearby moving charged objects and may induce common-mode currents in circuits they encounter.
However, instrument shielding does not include the patient—a major source of common-mode coupling. The shielding of the instrumentation system thus does nothing to prevent the presentation of large common-mode sources at electrode connections, after which common-to-differential mode conversion proceeds without inhibition. Shielding can, in fact, make matters worse by increasing capacitance between the instrument ground and earth ground, thus facilitating common-mode current flow.
Closely tailored to the inadequacies of shielding, a third common-mode signal reduction method is the use of extra electrodes to shunt currents around the leads in an effort to eliminate the common-mode current. In some systems, a third electrode is attached to the patient and connected to the instrument potential reference to shunt common-mode currents around the differential electrode leads. This results in a reduction—but not elimination—of common-mode currents in the differential input leads. Also, the addition of a third electrode adds complication to circuitry that minimally requires only two patient electrodes.
A fourth method for reducing the effects of common-mode signals is filtering. Some common-mode signals, especially those at low frequencies (e.g. below 1 Hz) or at power line frequencies, lie outside the normal pass-band desired for ECG signals (usually between 0.5-40 Hz) and thus the composite signal can be improved by pass-band filtering. Nevertheless, much of the energy in both common-mode artifacts and ECG signals occupy the same part of the spectrum, which limits the effectiveness of filtering. Many artifacts encountered in patient treatment fall into the normal ECG pass-band and have time characteristics that mimic ECG signals.
As mentioned above, none of these methods for dealing with the presence of common-mode signal completely eliminate the effects of converted common-to-differential mode signal. Thus, the potential for misdiagnosis is still a very real and serious possibility—even after these above suppression techniques have been applied.
Another approach to minimizing the effect of artifact is to detect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multivariable artifact assessment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multivariable artifact assessment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multivariable artifact assessment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547045

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.