Gas separation – With nonliquid cleaning means for separating media – Cohesive filter media cleaning
Reexamination Certificate
2002-04-12
2004-01-13
Spitzer, Robert H. (Department: 1724)
Gas separation
With nonliquid cleaning means for separating media
Cohesive filter media cleaning
C055S332000, C055S350100, C055S483000, C055S497000, C055S502000
Reexamination Certificate
active
06676721
ABSTRACT:
FIELD OF THE INVENTION
The present disclosure relates to air cleaners and particularly concerns air cleaners for cleaning combustion air directed to the engine air intake of large vehicles and equipment. The disclosure concerns preferred designs of air cleaners for such use, and methods of assembly and use.
BACKGROUND OF THE INVENTION
In general, combustion air for engines needs to be filtered to prevent particulates, otherwise carried in the intake air stream, from reaching sensitive engine components. As a result, nearly every engine system involving combustion air includes an air cleaner assembly of some type positioned in the intake air stream.
Many air cleaner assemblies generally comprise a housing through which the air is directed during filtration or cleaning. In some systems, a removable and replaceable filter element, or a combination of such filter elements, is provided within the housing. In use, the air is directed through the filter element(s) as it moves through the housing. In time, the filter element(s) becomes occluded or loaded with a concomitant increase in restriction across the air cleaner. At an appropriate service point, the filter element(s) is removed and is either refurbished (cleaned) or replaced.
Certain very large and powerful equipment types generate unique problems with respect to air cleaner operation. Consider large earth movers, haul trucks, and other very large types of construction and mining equipment that have 500-2,000 horsepower (hp) (37.3-149.2 KW) engines.
Such equipment operates for extended periods in extremely dusty environments. Such equipment also has very large volume demands for combustion air. This means very large amounts of particle-laden air on an almost continuous basis is passing through the air cleaner system. Indeed, the typical environments of use, for example construction sites and mining sites, are sites characterized by relatively large amounts of air borne particulates of a variety of sizes and population distribution.
Special heavy-duty multistage filtration units have been designed for use with such equipment. One such design has been available from Donaldson Company, Inc. of Minneapolis, Minn. under the designation SRG Donaclone™. Such products are designed for an air flow of up to approximately 1,300-4,500 cubic feet per minute (cfm) (81,000-281,000 pounds water per minute (pwm)) and are available in single or dual unit designs. In general, such arrangements are multistaged. In a first stage, a precleaner is provided for removal of up to 95% of the dirt in the air stream before it reaches the filters. Such precleaners generally operate by directing the inlet air flow through a plurality of cyclonic tubes with dust separation occurring as a result of the cyclonic air flow. Cyclonic precleaners are described, for example, in U.S. Pat. No. 5,693,109, incorporated herein by reference.
In the second stage, the air from the precleaner is directed into and through an air filter system, typically a filter system provided by two elements: an outer primary filter element and an internal secondary or safety element. The housings are generally configured so that, periodically, the primary filter (and if desired the secondary filter) can be removed and be refurbished or replaced.
SUMMARY
I. Summary of U.S. patent application Ser. No. 09/325,697
In one aspect of U.S. patent application Ser. No. 09/325,697, an example embodiment involves a filter assembly. The filter assembly includes a housing that defines first and second chambers, a first stage air cleaner, a second stage air cleaner, and a pulse jet cleaning arrangement. The first stage air cleaner is positioned in the first chamber and includes a first filter element through which air to be filtered is directed during use. The second stage air cleaner is positioned in the second chamber and includes at least one removable and replaceable filter element through which air is directed during use. The pulse jet cleaning arrangement is constructed and arranged to selectively direct a pulse jet of air, in a reverse direction, through said first filter element.
In another aspect of U.S. Ser. No. 09/325,697, an apparatus includes a first V-pack filter and a lift mechanism. The first V-pack filter has a first, lower end and a second, upper end. The second, upper end includes an air flow exit aperture; a first seal arrangement, or gasket, circumscribing the air flow exit aperture and projecting outwardly from said second, upper end; and a hard stop arrangement projecting outwardly from said second, upper end. The lift mechanism includes a base structure, a movable seat secured to the base structure, and a pivotally mounted control arm. The movable seat has a first, raised orientation and a second, lowered orientation. The pivotally mounted control arm raises the movable seat to the first raised orientation and lowers the movable seat to the second, lowered orientation. The first V-pack filter and the lift mechanism are constructed and arranged such that when the lift mechanism is positioned in the first, raised orientation, the first V-pack filter is pressed against a portion of a housing in a locked position with the first seal arrangement pressed to form a seal and the hard stop limiting an extent of movement of the V-pack toward the housing. When the lift mechanism is in the second, lowered orientation, the first V-pack filter is released from the locked position.
In another aspect of U.S. Ser. No. 09/325,697, a method of operating an engine air intake filter assembly is discussed. The filter assembly includes a first chamber to house a first stage air cleaner, a second chamber to house a second stage air cleaner, and a pulse jet cleaning arrangement constructed and arranged to selectively direct pulses of air through the first stage air cleaner. The method includes measuring a pressure drop across the first stage air cleaner during engine operation; measuring an engine load during the engine operation; and activating a pulse valve of the pulse jet cleaning arrangement to direct a pulse of air, in a reverse direction, through the first stage air cleaner in response to the engine load being below a predetermined engine load and the pressure drop exceeding a predetermined pressure drop.
II. Summary of the Interlocking Arrangement
In one aspect of this discussion, an example embodiment involves an apparatus. The apparatus includes a retention mechanism, a V-pack filter, and an interlocking arrangement. The retention mechanism includes a base structure and a movable seat. The movable seat is secured to the base structure and has a first, locked orientation and a second, unlocked orientation. The V-pack filter includes a frame construction having first and second frame structures. The V-pack filter also includes first and second panel sections mounted in extension between the first and second frame structures. The first panel section has first and second ends. The second panel section has third and fourth ends. The first and third ends have a first distance therebetween. The second and fourth ends have a second distance therebetween. The second distance is generally greater than the first distance thus causing a V-shape. The first and second panel sections and the second frame structure define an air flow aperture. The V-pack filter also includes a sealing arrangement that circumscribes the air flow aperture and projects outwardly from the second frame structure.
The apparatus has a first, operable orientation wherein the V-pack filter is operably mounted in the apparatus. The apparatus also has a second, unload orientation wherein the V-pack filter is in a loosened positioned for separation from the apparatus. The interlocking arrangement includes first and second interlocking devices. The V-pack filter includes the first interlocking device. The second interlocking device is orientated in the apparatus and is mounted on a member separate from the V-pack filter. The interlocking arrangement is constructed and arranged such that when the retention system is in the first, locked ori
Fuchs Ervin P.
Gillingham Gary R.
Koehler Stan M.
Krisko William J.
Miller Thomas G.
Donaldson & Company, Inc.
Merchant & Gould P.C.
Spitzer Robert H.
LandOfFree
Multistage air cleaner including pulse cleaning system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multistage air cleaner including pulse cleaning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multistage air cleaner including pulse cleaning system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3254606