Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
2002-08-13
2004-04-27
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S473000, C600S476000, C382S128000
Reexamination Certificate
active
06728561
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to methods, apparatus and computer program products for measuring blood oxygen saturation in a vessel, such as a retinal vessel and, more particularly, to methods, apparatus and computer program products for processing images of a vessel, such as a retinal vessel, obtained with light of different wavelengths to obtain a more accurate measurement of the percent transmittance of the vessel at each wavelength and, in turn, a more accurate measurement of the blood oxygen saturation of the vessel.
BACKGROUND OF THE INVENTION
A variety of spectroscopic oximetry techniques have been developed to monitor the blood oxygen saturation and blood oxygen content in vessels, such as retinal vessels. By monitoring the blood oxygen saturation, the arteriovenous oxygen difference can be determined as described by U.S. Pat. No. 5,308,919 to Thomas E. Minnich, U.S. Pat. No. 5,776,060 to Matthew H. Smith, et al., and U.S. Pat. No. 5,935,076 to Matthew H. Smith, et al. Based upon the arteriovenous oxygen difference, the cardiac output of a subject can be determined in order to assist in post-operative monitoring and the management of critically ill patients. By monitoring the blood oxygen saturation, the loss of blood can be detected, and the rate and quantity of blood loss over time can be estimated as described by U.S. Pat. No. 5,119,814 to Thomas E. Minnich.
In addition to the variety of invasive techniques that require blood to be drawn, oftentimes repeatedly, from a patient, a number of non-invasive spectroscopic oximetry techniques have been developed to measure the blood oxygen saturation of a patient without requiring blood to be drawn from the patient. For example, a number of non-invasive spectroscopic oximetry techniques have been developed which measure the blood oxygen saturation of a patient based upon the transmittance of the blood within a retinal vessel, such as a retinal vein or a retinal artery. For example, U.S. Pat. Nos. 5,776,060 and 5,935,076 describe techniques for measuring the oxygen saturation of blood within a retinal vessel by illuminating the retinal vessel with light having a combination of wavelengths and then measuring the transmittance of the blood within the retinal vessel in response to the illumination at each of the selected wavelengths. Based upon the respective transmittances of the blood within the retinal vessel that are measured at each of the selected wavelengths, the oxygen saturation of the blood within the retinal vessel can be determined. The contents of U.S. Pat. Nos. 5,776,060 and 5,935,076 are hereby incorporated by reference in their entirety.
While a retinal vessel can be illuminated with light of different wavelengths in a variety of manners, U.S. Pat. No. 6,244,712 which issued Jun. 12, 2001 to Matthew H. Smith, et al. describes an advantageous technique for alternately illuminating the posterior portion of an eye with the signals emitted by different lasers such that the resulting image has interlaced portions formed by signals returning from the posterior portion of the eye in response to illumination by different lasers. Since each laser is designed to emit signals having a different wavelength, the resulting image can therefore include data collected at each of a number of different wavelengths. The contents of U.S. Pat. No. 6,244,712 are also hereby incorporated by reference in their entirety.
While a retinal vessel can be illuminated by light having a variety of different wavelengths, at least one wavelength is generally in the red part of the spectrum. In this regard, the proper combination of wavelengths must be utilized in order to obtain data from which the transmittance of the blood and, in turn, the oxygen saturation of the blood within the retinal vessel can be determined. At least one of most any proper combination of wavelengths is typically in the red spectrum. Additionally, diode lasers are typically utilized as laser sources for illuminating a retinal vessel and a common wavelength of light emitted by a diode laser is in the red spectrum. Unfortunately, a retinal blood vessel absorbs light in the red spectrum relatively weakly compared to light having other wavelengths. As such, the signals in the red spectrum that are returning from the posterior portion of the eye will not exhibit as great a contrast between the retinal vessel and the underlying tissue bed, i.e., the background fundus, as signals having other wavelengths.
As described in U.S. patent application Ser. No. 10/134,360, the light with which a retinal vessel is illuminated may be reflected and transmitted in a variety of different manners. Of these different manners, single pass light that passes through the retinal vessel, diffuses laterally through the retinal and/or choroidal layers and then exits through the pupil without again traversing the retinal vessel contains the information relevant to determining the oxygen saturation of the blood in the retinal vessel. However, the other signals that have been reflected and transmitted in different manners contain information that is less useful and render the determination of the blood oxygen saturation more difficult. As such, an aperture may be disposed within the path of the optical signals returning from the eye in order to preferentially pass single pass optical signals while blocking optical signals that have been reflected and transmitted in other manners. While effective for preferentially passing single pass optical signals, the optical signals that pass through the aperture and are detected have a substantially lower intensity and contrast than the unfiltered optical signals returning from the posterior portion of the eye. U.S. patent application Ser. No. 10/134,360 was filed Apr. 29, 2002 by Matthew H. Smith, et al. and is incorporated herein in its entirety.
As a result of the reduced contrast exhibited by the optical signals having a wavelength in the red spectrum and the lower intensity and contrast of the single pass optical signals that are preferentially passed through the aperture, the resulting image may have a relatively low contrast and intensity, thereby rendering it difficult to distinguish the retinal vessel from the background fundus. This difficulty in distinguishing the retinal vessel from the background fundus is exacerbated since the coloration of the background fundus can vary significantly. As a result of the relatively low contrast between the retinal vessels and the background fundus, it is sometimes difficult to determine the percent transmittance of the retinal vessel and, in turn, the oxygen saturation of the blood within the retinal vessel with sufficient certainty.
Accordingly, it would be advantageous to develop improved methods and apparatus for determining the blood oxygen saturation within a vessel, such as a retinal vessel. In particular, it would be advantageous to develop improved methods and apparatus for evaluating the optical signals returning from the posterior portion of the eye in order to more reliably determine the percent transmittance of the retinal vessel in response to illumination by light of each of a number of different wavelengths and, in turn, to more precisely determine the blood oxygen saturation within the retinal vessel, especially in instances in which the resulting images have a relatively low contrast between the retinal vessel and the background fundus.
SUMMARY OF THE INVENTION
An improved method, apparatus and computer program product are therefore provided according to one aspect of the present invention for more accurately determining the percent transmittance of a vessel, such as a retinal vessel, at each of a number of different wavelengths and, in turn, for more accurately determining the blood oxygen saturation within the vessel. The method, apparatus and computer program product are particularly advantageous for determining the blood oxygen saturation within a retinal vessel from images having a relatively low contrast between the retinal vessel and a tissue bed, such as the b
Denninghoff Kurt R.
Hillman Lloyd W.
Manchenahalli Raghunandan
Smith Matthew H.
Alston & Bird LLP
University of Alabama in Huntsville
Winakur Eric F.
LandOfFree
Multispectral image processing method, apparatus and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multispectral image processing method, apparatus and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multispectral image processing method, apparatus and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3196211