Multipurpose vehicle coolant recycling device and method for...

Liquid purification or separation – Processes – Chemical treatment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S805000, C210S167050, C210S202000, C210S203000, C210S258000, C210S259000, C210S314000, C210S323100

Reexamination Certificate

active

06193895

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a multipurpose vehicle coolant recycling device and to a method for recycling vehicle coolant.
BACKGROUND OF THE INVENTION
The typical internal combustion engine is cooled by providing a coolant (oftentimes called anti-freeze) in cavities that surround the engine. A typical coolant is an aqueous glycol composition such as aqueous ethylene glycol or propylene glycol. These glycols function to reduce the freezing point of coolant and raise the coolant's boiling point, thus assuring that the vehicle's coolant will not freeze or boil over. During operation of the engine, air is constantly drawn into and expelled from the coolant composition. When the coolant is heated during engine operation, air is expelled from the coolant. When the engine is at rest and the temperature of the coolant drops, air is absorbed by the coolant up to the saturation point. This repeated cycle in the life of a coolant provides an oxidation mechanism by which metal ions that are generated by corrosive attack of engine surfaces are subjected to instantaneous oxidation and glycol is thermally oxidized.
Essentially all metal ions when converted to their highest oxidation state form insoluble hydroxides and oxides in the coolant composition, thus forming a precipitate that collects within the engine's coolant chamber. Some of the metals are oxidized to form precipitated hydroxides that deposit on the wall of the coolant chamber and interreact by condensation reactions to form a beneficial oxide layer. This layer protects the engine block from serious corrosion. It would be undesirable to have present in the coolant a component that attacks that beneficial oxide layer and causes its removal. Such action eventually leads to serious corrosion of the engine block. One such component that would attack the beneficial coating if present in the coolant in deleterious amounts, is the chloride ion. It will convert the oxides into soluble chlorides, thus wiping away the beneficial oxide layer. For example, it will convert iron oxides through thermally induced chlorination, to ferric and ferrous chlorides, and aluminum oxides through thermally induced chlorination, to aluminum chloride. These chlorides are very acidic and notorious Friedel-Craft catalysts. They can accelerate the decomposition of the coolant and cause corrosion of metal surfaces.
Other of the precipitates form within the coolant and serve no useful function. Most of these precipitates are of sufficient size so as to deposit from the coolant to the bottom of the coolant chamber. A minor portion, more like a trace amount, of the precipitates have such a small size (more like microscopic in size) that they remain dispersed in the coolant. Eventually these precipitates have to be removed and thus flushing of the coolant system is an appropriate procedure.
The trace amounts of these metal hydroxides that remain suspended particulates within the coolant will, with time, chemically interreact to form dimeric and oligomeric condensates. Such condensates remain suspended (dispersed) in the coolant. These condensates are difficult to remove by filtration because they have an extremely small particle size. Because the metal atoms in these condensates are at their maximum state of oxidation, further oxidation of the coolant will not cause these condensates to be further oxidized. Nor will further oxidation cause these condensates to drop out of dispersion in the coolant.
There are described in the literature a variety of systems directed to the treatment of spent engine coolant that allows for the recovery and refurbishing of such coolant. Illustrative of such technology are a series of patents to the Wynn Oil Company, such as U.S. Pat. Nos. 4,083,393, 4,091,865, 4,109,703, 4,178,134, 4,209,063, 4,293,031, 4,791,890, 4,793,403, 4,809,769, 4,899,807, 4,901,786, 5,021,152, 5,078,866, 5,306,430, 5,318,700 and Re. 31,274.
PCT/US92/00555 and U.S. Pat. No. 4,946,593, to Miller, describe a process for the treatment of a spent coolant outside of the engine.
A system that was commercialized in the past was sold by ECP, Inc., Westchester, Ill. It involved the vacuum removal of spent coolant from an engine, subjecting the coolant to filtration, and the addition of a “Coolant System Protector” to the filtered spent coolant.
Woyciesjes, et al., U.S. Pat. No. 5,223,144, describe a process for treating an aqueous spent coolant composition by adjusting its pH to the acid range, e.g., 4.0-7.5, by adding an acid, and then adding acid salts to effect precipitation of heavy metal impurities in salt or complex form from the spent coolant. Also included in the process description is the treatment of the acidic coolant composition with coagulating and flocculating agents, filtration of the acidic coolant, passing the acidic coolant through an activated carbon bed, through a distillation step, and a skimming step to remove precipitates.
A vehicle coolant recycling device is described by U.S. Pat. No. 5,549,832 to Ische, et al. The assignee of this patent is Century Manufacturing Company of Minneapolis, Minn.
SUMMARY OF THE INVENTION
A multipurpose vehicle coolant recycling device is provided by the invention. The multipurpose vehicle coolant recycling device includes a pump for pumping coolant through said recycling device, a processing tank for receiving used coolant, a fresh coolant tank for receiving fresh coolant, a filter for removing particulates from coolant, a coolant outlet hose constructed for attachment to a cooling system of a motor vehicle, a coolant inlet hose constructed for attachment to a cooling system of a motor vehicle, and a plurality of control valves for directing flow of coolant through the recycling device. The plurality of control valves are adjustable between a first configuration, a second configuration, a third configuration, and a fourth configuration. The first configuration is constructed for directing coolant from the fresh coolant tank through the pump and through the coolant outlet hose, and directing coolant from a cooling system of a motor vehicle through the coolant inlet hose and into the processing tank. The second configuration is constructed for directing coolant from the processing tank, through the pump, the filter, the coolant outlet hose, and into a cooling system of a motor vehicle, and directing coolant from a cooling system of a motor vehicle through the coolant inlet hose and into the processing tank. The third configuration is constructed for directing coolant from the processing tank, through the pump, the filter, and into the processing tank. The fourth configuration is constructed for directing coolant from the processing tank, through the pump, and into the fresh coolant tank.
A method for recycling vehicle coolant is provided by the invention. The method includes steps of:
(a) attaching a coolant inlet hose and a coolant outlet hose to a cooling system of a motor vehicle to provide fluid connectivity with coolant provided in the cooling system, wherein the coolant provided in the cooling system comprises used coolant for recycling;
(b) pumping fresh coolant into said cooling system from a fresh coolant tank to displace at least part of the used coolant in the cooling system into a processing tank;
(c) chemically treating used coolant in the processing tank to provide chemically treated coolant;
(d) pumping chemically treated coolant through a filter to remove 0 particulates and provide filtered coolant;
(e) treating the filtered coolant with a corrosion inhibitor; and
(f) pumping filtered coolant to a fresh coolant tank.
The method can include an additional step of detaching the coolant inlet hose and the coolant outlet hose from the cooling system after a sufficient amount of used coolant in the cooling system has been displaced by fresh coolant.


REFERENCES:
patent: Re. 31274 (1983-06-01), Babish et al.
patent: D. 248942 (1978-08-01), Kniss
patent: D. 290491 (1987-06-01), Goddard
patent: D. 292429 (1987-10-01), Spink
patent: D. 306339 (1990-02-01), Slovak
patent: D. 3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multipurpose vehicle coolant recycling device and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multipurpose vehicle coolant recycling device and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multipurpose vehicle coolant recycling device and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2594506

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.