Multiport trocar

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S167020, C604S167060, C604S170020, C126S054000

Reexamination Certificate

active

06217555

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to surgical access devices, such as trocars, which are adapted to provide access across a body wall and into a body conduit or cavity.
2. Discussion of the Prior Art
Trocars of the past have typically included a cannula and a valve housing which together define an access or working channel for various surgical instruments. The cannula has been formed in the configuration of an elongate rigid cylinder which has been inserted, with the help of an obturator, into a body cavity, such as the abdominal cavity to provide access across a body wall, such as the abdominal wall.
In a typical abdominal laparoscopic surgery, the abdomen is insufflated to pressurize and thereby enlarge the cavity within which a surgical procedure is to be performed. Various instruments used in the procedure have been inserted, previously one at a time, through the working channel of the trocar to perform the surgery. In order to maintain the insufflation pressure when the instrument is inserted through the trocar, a valve has been provided in the housing to form a seal around the instrument. These instrument valves have typically been provided in the form of septum valves. When the instrument is removed, a zero closure valve has typically been provided to seal the trocar in order to maintain the insufflation pressure.
A septum valve similar to that disclosed and claimed by applicant in copending application Ser. No. 08/051,609 filed Apr. 23, 1993 and entitled Seal Assembly for Access Device is typical of the instrument valves. A typical zero closure valve might be in the form of a double duck bill valve such as that disclosed in the same application which is incorporated herein by reference.
Instruments vary in size and diameter. While the zero closure valves of the past can accommodate a relatively wide range of diameters, the septum valves are generally capable of stretching only a nominal amount to accommodate larger diameters. Accordingly, these valve sets are generally limited as to the size of instrument which they can accommodate. Attempts have been made to increase the range of septum valves by providing levers which prestretch the valve in order to reduce some of the friction forces. These universal septum valves, such as those disclosed and claimed by applicant in U.S. Pat. No. 5,209,737, are relatively complex in structure but nevertheless are able to accommodate a wide range of instruments.
In trocars of the past, the septum valves and zero closure valves have been formed as a valve set. This set has typically been configured along a common axis which extends through the opening of the septum valve, the zero closure valve, and the cannula.
In the past, only a single valve set was provided in the trocar. This necessitated that instruments used with the trocar be inserted only one at a time. Thus a first instrument would be inserted through the septum valve and the zero closure valve to gain access to the abdominal cavity. With the instrument in place, the septum valve would maintain the insufflation pressure. Once the first instrument was removed, this insufflation pressure was maintained by the zero closure valve. Only upon removal of the first instrument could a second instrument be inserted through the same septum valve and the same zero closure valve.
When an instrument was required that had a diameter outside the range of a particular valve set, the entire trocar had to be replaced with one which could accommodate a different range of diameters. In some cases alternative septum valves were provided each of which functioned with the same zero closure valve but accommodated a different range of instrument diameters. Even where the trocars of the past provided for alternative valve sets, only a single instrument could be inserted at a time.
SUMMARY OF THE INVENTION
These deficiencies of the prior art have been overcome with the present invention which provides for the insertion of two or more instruments into the same trocar at the same time. This trocar which provides for a seal assembly having multiple valve sets in a single valve housing, is significantly simplified so that manufacturing costs are greatly reduced.
Each of the valve sets in a preferred embodiment accommodates a different range of instrument sizes so that only a single trocar and seal assembly is required in order to accommodate all possible instrument sizes. Thus, a single simplified trocar can accommodate not only a full range of instrument sizes, but can even accommodate multiple instruments simultaneously. Not only is the single trocar less expensive to manufacture, but the number of assemblies and trocars required for a given surgical operation is also reduced. This will be greatly appreciated in a cost sensitive marketplace where as many as one million laparoscopic surgeries are performed annually in the United States, each requiring as many as four to six trocars per surgery.
Each of the valve sets is provided with characteristics for forming an instrument seal as well as a zero closure seal. These characteristics can be provided for the smallest range of instruments, by a single septum valve which additionally has zero closure characteristics. For larger valve sets, a septum valve is combined with a zero closure valve in each of the sets. In an embodiment wherein the cannula has a first axis, the septum valve a second axis, and the zero closure valve a third axis, at least one of the second and third axes is offset from the first axis. It may also be desirable to offset the second axis of the second septum valve from the third axis of the zero closure valve in order to accommodate more valve sets in the single valve housing. In these embodiments, the zero closure valves can be formed in any manner associated with the prior art, but the double duck bill valve configuration is preferred.
In one aspect of the invention, a trocar is adapted to extend across a body wall into a body cavity, and to form a seal around an instrument inserted through the trocar into the body cavity. The trocar comprises a cannula forming an elongate passage and a valve housing disposed at a proximal end of the trocar. A valve assembly is disposed relative to the housing and includes a first valve set forming a first working channel with the passage of the cannula and a second valve set forming a second working channel with the passage of the cannula. The first valve set includes a first septum valve and a first zero closure valve each disposed along the first working channel. The second valve set includes a second septum valve and second zero closure valve each disposed along the second working channel. The trocar further comprises means for further supporting at least one of the first septum valve and the second septum valve relative to the housing in a “floating” relationship with the cannula.
In an additional aspect of the invention, a trocar assembly includes a cannula having an axis extending between a proximal end and a distal end. A housing disposed at the distal end of the cannula includes a rigid housing portion fixed to the cannula and an axially compressible elastomeric housing portion disposed proximally of the rigid housing portion. Together the rigid and elastomeric housing portions form a working channel with the cannula of the trocar. This channel is sized and configured to receive an obturator having a shaft with an axis extending to a sharp distal tip. When the obturator is operatively disposed, this distal tip extends beyond the distal end of the cannula. The trocar assembly includes means associated with the shaft of the obturator and at least one of the cannula and the rigid housing portion for preventing insertion of the obturator into the cannula beyond the operative position of the obturator in order to avoid substantial axial compression of the elastomeric housing portion.
In a further aspect of the invention, a trocar assembly includes a cannula having a first axis and a valve housing forming a working channel with the cannula. A fir

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiport trocar does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiport trocar, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiport trocar will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2509058

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.