Multiplex communications – Special services – Conferencing
Reexamination Certificate
2001-01-29
2002-12-17
Yao, Kwang Bin (Department: 2664)
Multiplex communications
Special services
Conferencing
C379S202010, C345S215000
Reexamination Certificate
active
06496486
ABSTRACT:
BACKGROUND OF THE INVENTION
1.Field of the Invention
The present invention relates to data communication, equipment, and, more particularly, to a communication system involving simultaneous voice and data modems.
2. Description of the Related Art
The growth of the personal computer industry is attributable in part to the availability of inexpensive, yet powerful computers. Improvements in processor, memory, data storage and communications technologies have resulted in computers which can provide sufficient processing capability for audio visual applications such as computer-aided design, three-dimensional animation, and multimedia presentation for extended durations, even when users are at remote or relatively inaccessible locations.
The communication of digital information such as data over analog transmission links such as telephone lines and trunks is known in the art. At the transmitting end of the link, a modem uses a representation of the digital information to modulate a carrier frequency and transmits the modulated carrier frequency on the transmission link. At the receiving end of the link, another modem demodulates the carrier frequency to retrieve the representation of the digital information, and reconstitutes the digital information therefrom. A pair of modems can thus engage in a communication protocol that includes control and signalling to set up and terminate the communication connection.
The continuing development of computer and telephone communication systems requiring expanded data conversion and processing capabilities, however, is taxing the transmission capability of existing telephone networks in that separate lines are required for computer communications and for human conversations. To reduce this load, voice and data modems recently appeared which allow a voice communication channel to be carried out simultaneously with a data communication channel such that both channels appear as a single communication to the transmission facility that interconnects the modems. Simultaneous voice and modem data transmitted over the same communications link between two sites has been accomplished in several ways. The most common communications links between two sites is the telephone line. The most common data handling equipment to communicate over a communications link is the computer modem which modulates digital data onto a carrier for transmission in the voice band of a telephone line. A wide variety of modulations standards promulgated by such international groups as ITU for communications in the voice band exist. In these schemes, the voice channel is typically created by modulating a second carrier frequency with the representation of the voice signals. Alternatively, a digital implementation of the voice and data modem allows voice signals to be encoded in digital form and the encoded voice and data are multiplexed for transmission to the other side.
Currently, one simultaneous voice over data standard known as digital simultaneous voice and data (DSVD) is standardized in an International Telecommunication Union specification ITU-T Recommendation V.70. DSVD improves upon other simultaneous voice and data technologies by allocating bandwidth to both jobs with the ability to simultaneously support voice transmission at 9.6 kilobauds per second on a standard telephone line while the remaining bandwidth is available for data transmission. Thus, by providing the ability for a single point-to-point connection to share user data and exchange voice at the same time, DSVD allows the simultaneous exchange of data and digitally encoded voice signals over a single dial-up phone line. The voice quality is essentially the same as that provided over present phone lines. DSVD modems use V.34 modulation which provides up to 33.6 kilobits per second.
The arrival of the wide range of modems conforming to the DSVD standard eliminates in many cases the need for two separate phone lines (one for voice, and one for data) when using collaborative applications such as desktop personal conferencing or interactive games. However, with the increasing number of organizations located in multiple sites, effective group working requires communications facilities that can join together more than two locations. Multi-point communications provides such a facility for both audiovisual and data communications, overcoming current point-to-point network constraints. The need for multiple DSVD connections is essential when multiple users need to share the data and exchange voice simultaneously over the same link. However, present day DSVD solutions do not support such multiple DSVD connection. Thus, a need exists for low cost sharing of data and the exchange of voice information at end-user premises.
SUMMARY OF THE INVENTION
The present invention facilitates the sharing of data and the exchange of voice information over a network of DSVD modems, including a first remote digital simultaneous voice and data (DSVD) modem and a second remote DSVD modem. The multipoint conferencing system provides a first DSVD modem adapted to communicate with the first remote DSVD modem and a second DSVD modem adapted to communicate with the second remote DSVD modem. Each DSVD modem has an analog to digital converter and a digital signal processor coupled to the analog to digital converter for receiving data from the remote DSVD modems.
The system also provides a bridge which is connected to the first and second DSVD modems for transferring data between the first and second remote DSVD modems. The bridge contains a speech decoder adapted to receive data from the first and second remote DSVD modems, first and second summers, a speech coder which is adapted to send data to the first and second remote DSVD modems, and a digital data router for collecting digital data from the first and second remote DSVD modems and forwarding the digital data to first remote DSVD modems, the second remote DSVD modems, or both. To convert the digital data back into the analog domain, the system has a sound generator or speaker, a microphone adapted to receive sound, and an acoustic echo cancelling system for minimizing echo feedbacks from the speaker. In addition to the multipoint DSVD system, a full duplex speaker telephone is also provided to handle voice only conferencing.
Thus, the multipoint conferencing system of the present invention enables the sharing of data and the exchange of voice information over a network of DSVD modems. The multi-point communication capability of the present invention facilitates both audiovisual and data communications, overcoming current point-to-point network constraints. The multiple DSVD connections thus supports multiple users who need to share the data and exchange voice simultaneously over the same link. In this manner, the present invention provides all effective group working atmosphere using communications facilities that can join together more than two locations.
REFERENCES:
patent: 5272698 (1993-12-01), Champion
patent: 5428608 (1995-06-01), Freeman et al.
patent: 5559792 (1996-09-01), Bottoms et al.
patent: 5602902 (1997-02-01), Satterlund et al.
patent: 5943046 (1999-08-01), Cave et al.
patent: 6020915 (2000-02-01), Bruno et al.
patent: 6370564 (2002-04-01), Bretscher
ITU-T Reccomendation V.70, Aug. 1996.
Akin Gump Strauss Hauer & Feld & LLP
Compaq Information Technologies Group L.P.
Harper Kevin C.
Yao Kwang Bin
LandOfFree
Multipoint digital simultaneous voice and data system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multipoint digital simultaneous voice and data system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multipoint digital simultaneous voice and data system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2935966