Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
2001-07-09
2003-02-18
Pascal, Leslie (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S199200, C359S199200, C714S704000, C714S751000, C714S752000
Reexamination Certificate
active
06522436
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to high-capacity optical transmission systems in which each optical pulse is multiplexed to carry multiple bits of information.
BACKGROUND TO THE INVENTION
Existing telecommunications systems typically transmit optical signals over optical fibres with a pulse rate of 10 Gb/s and, for example, use wavelength division multiplexing to transmit eight channels simultaneously, thereby achieving a data rate of 80 Gb/s per fibre. Transmission of optical signals is possible over about 400 km, using appropriate optical amplifiers, before conversion to the electrical domain is required to effect further regeneration.
It is estimated that future requirements of long distance traffic will require a transmission capacity greater than 1 Terabit per second per fibre. This increase in performance cannot simply be accommodated in such systems by increasing the bit rate per channel because of the onset of non-linear effects such as self-phase modulation and because the associated electronic processing at increased serial data rates becomes prohibitively expensive. Similarly, increasing the number of channels per pulse presents difficulties. Currently each channel is provided by a separate laser source whose ouptut is filtered to a respective channel wavelength, the wavelengths being separated by guard bands to provide suitable tolerance to drifting due to environmental effects or ageing and, coupled with the limited bandwidth of laser amplifiers used for optical repeating systems, a limitation therefore exists on the number of channels which can be added to expand the data handling capacity of the system.
It is known from De Souza et al, Optics Letters vol. 20, no. 10, p.1166-8, to provide wavelength division multiplexing using a single broadband femtosecond source by slicing the spectral bandwidth into 16 channels which are modulated individually. De Souza proposes using a diffraction grating and collimating lens to disperse light from the source onto a modulator array chip and to recombine the component wavelengths into an output beam for transmission to a receiver. A disadvantage of this technique is the size of the diffraction grating and associated optics.
A similar arrangement is proposed by Knox et al in U.S. Pat. No. 5,526,155 with the additional proposal that the diffraction grating could be replaced by a suitable wavelength splitter such as a Dragone wavelength router as described in C. Dragone, “An N×N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers”, IEEE Photonics Technology Letters, vol. 3, no. 9, pp812-815, September 1991. The Knox reference proposes that each channel is formed by many different longitudinal modes of the optical source, the output of a pulsed laser typically having a spectrum in which a series of closely spaced peaks, sometimes referred to as modes of the laser. It is proposed by Knox that 250 or more different channel signals may be generated in this manner to provide a transmission capacity of 25 Gbits/sec.
It is known from Shao et al, “WDM Coding for High-Capacity Lightwave Systems”, Journal of Lightwave Technology, vol. 12, no. 1, January 1994, to provide error detection and correction coding in a wavelength division multiplexed optical system where n channels are provided by separate sources of respective wavelengths and parallel word transmission occurs such that n=k+r where k equals the number of data bits per word and r equals the number of parity bits per word. A Hamming coding scheme is utilised to define the calculation of parity bits and the data recovery process at the receiver.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved multiplexing technique to allow transmission capacity to be increased to a rate in the region of 1 Terabit per second per fibre or more using a pulse repetition rate of the order of 1 GHz.
It is a further object of the present invention to provide error correction capable of dealing with both failure of individual channels in a multiplexed system and dealing with burst errors affecting a number of successive pulses. It is a further object of the present invention to provide an improved wavelength division multiplexing method with a large number of channels and controlling the stability of individual channel outputs.
It is a further object of the present invention to provide an improved method of generating clock signals when detecting multiplexed signals.
It is a further object of the present invention to provide an improved method of multiplexing optical pulses using a broad spectrum source.
It is a further object of the present invention to provide a method of optical communication in which the receiving and detection of received pulses is tolerant to systematic drift in the modulation and transmission of the optical pulses.
It is a further object of the present invention to provide a method of optical communication using multiplexed optical pulses which is tolerant to the occurrence of error prone channels.
According to the present invention there is disclosed a method of optical communication comprising the steps of;
transmitting a train of optical pulses;
multiplexing each pulse to provide a plurality of channels; and
applying error correction coding to data carried by the channels using both interchannel coding and serial coding of individual channels.
Data transmission is thereby rendered more robust under a range of error conditions such as the onset of failure of one individual channel and also the occurrence of a burst of errors affecting a number of channels simultaneously.
Preferably the serial coding is enhanced by interleaving. BCH codes such as Hamming codes may conveniently be used.
According to a further aspect of the present invention there is disclosed a method of wavelength division multiplexing of optical signals for use in optical communications comprising the steps of;
generating optical signals by operation of a single laser source which is pulsed to have a spectral content comprising a series of spectral lines;
inputting the pulses to a dispersive device for spatially dispersing a set of the spectral lines for each pulse into respective output components, the dispersive device comprising an array of waveguides having a range of incrementally different lengths arranged in a phased array configuration;
monitoring the extent to which the frequency selective properties of the waveguide array are matched to the spectral lines; and
controlling, in dependence upon the result of monitoring, the operation of at least one of the dispersive device and the laser source to maintain substantial uniformity with respect to time of the output components of the optical pulses.
The monitoring step preferably comprises monitoring the output of the waveguide array for a selected one of the spectral lines and controlling the operation of the dispersive device by regulating the temperature of a temperature controlled environment within which the waveguide array is located.
According to a further aspect of the present invention there is disclosed a method of optical communication comprising the steps of receiving optical pulses which are multiplexed to define a plurality of channels;
detecting the pulses to obtain temporally dispersed channel signals for the respective channels; and
generating clock signals for the respective channel signals for use in subsequent signal processing;
and wherein the generating step comprises extracting first and second clock signals in respect of first and second channel signals, and determining clock signals for remaining channel signals by interpolation.
Conveniently the first and second channel signals are selected as the earliest and latest received of the channel signals respectively. The interpolation in a preferred embodiment is linear with respect to temporal dispersion.
According to a further aspect of the present invention there is disclosed a method of optical communication comprising the steps of;
transmitting a train of optical pulses; and
multiplexing each pul
Epworth Richard Edward
O'Sullivan Maurice M
Roberts Kim Byron
Robinson Alan
Lee Mann Smith McWilliams Sweeney & Ohlson
Nortel Networks Limited
LandOfFree
Multiplexed transmission of optical signals does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiplexed transmission of optical signals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiplexed transmission of optical signals will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3137998