Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition
Reexamination Certificate
2000-05-09
2002-12-03
Warden, Jill (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Control element responsive to a sensed operating condition
C422S112000, C204S601000, C204S451000
Reexamination Certificate
active
06488895
ABSTRACT:
BACKGROUND OF THE INVENTION
Microfluidic devices and systems have recently been developed for performing large numbers of different analytical and/or synthetic operations within the confines of very small channels and chambers that are disposed within small scale integrated microfluidic devices. These systems have proven extremely effective for performing a wide range of desired analytical operations at extremely high throughput rates, with much lower reagent requirements, and in a readily automatable format.
Despite the improvements in throughput and accuracy of individual microfluidic systems, as with any operation, multiplexing the basic system can substantially increase throughput, so that the operations of the system are carried out in highly parallelized systems. Specifically, by coupling together large numbers of individual systems, one can multiply the throughput of the system by the number of parallel systems.
Microfluidic devices and systems, because of their extremely small space requirements are particularly well suited for parallelization or multiplexing because large numbers of parallel analytical fluidic elements can be combined within a single integrated device that occupies a relatively small area, e.g., from about 1 cm
2
to about 50 cm
2
. An example of such a parallelized or multiplexed device is described in, e.g., Published International Application No. 98/00231, which describes a microfluidic device, system and method for performing high throughput screening assays.
Because microfluidic systems can have complicated manufacturing processes, production yields of perfectly functioning devices can be relatively low. In the case of highly parallelized, multiplexed systems, the yield problems can be multiplied by the number of multiplexed or parallel systems. Merely by way of illustration, one might have a process of fabricating a channel network in a typical, single operation microfluidic device, where one of ten attempts at fabricating a functional channel network fails. Assuming that this probability of failure is the same for each separate channel network in a multiplexed system, e.g., including ten separate channel networks, one can see that the probability of producing a perfectly functioning multiplexed system is substantially reduced. This probability is further decreased as the number of multiplexed elements is increased.
Accordingly, it would generally be desirable to provide multiplexed microfluidic devices that have structures that permit higher fabrication yields, as well as methods of fabricating such devices. The present invention meets these and other needs.
SUMMARY OF THE INVENTION
In a first aspect, the present invention provides a multiplexed microfluidic device, comprising a plurality of microfluidic modules. Each module is comprised of a discrete channel network disposed within. The device also includes at least a first substrate having at least a first fluidic element disposed within. The plurality of microfluidic modules are attached to the first substrate such that the at least first fluidic element is in fluid communication with a fluidic element disposed within each of the microfluidic modules.
Another aspect of the present invention is a multiplexed microfluidic device, comprising a plurality of microfluidic modules. Each module has a microfluidic channel network disposed within. A common frame is attached to each of the plurality of modules. The frame includes a common input element which is operably coupled to each of the plurality of microfluidic modules.
Another aspect of the present invention is a microfluidic system, comprising a multiplexed microfluidic device that comprises a plurality of microfluidic modules attached to a first substrate. The fluidic element in the first substrate is in fluid communication with at least one of a first and second intersecting microscale channels disposed within each of the plurality of microfluidic modules. The system also includes a material transport system operably coupled to each of the first fluidic element and the first and second microscale channels, for transporting material from the first fluidic element into and through the at least one of the first and second microscale channels. A detector is disposed in sensory communication with at least one of the first and second channels in the microfluidic modules, for detecting a signal within the at least one channel.
Another aspect of the present invention is a method of manufacturing a multiplexed microfluidic device, comprising providing a substrate having at least a first fluidic element disposed therein. A plurality of openings are disposed from a surface of the substrate to the fluidic element. A plurality of microfluidic modules is attached to the substrate. Each microfluidic module comprises at least a first fluidic element disposed therein and an opening providing access from a surface of the microfluidic module to the first fluidic element. The modules are attached to the substrate such that each of the plurality openings on the substrate is in fluid communication with an opening on a separate microfluidic module.
REFERENCES:
patent: 4390403 (1983-06-01), Batcheider
patent: 4908112 (1990-03-01), Pace
patent: 5126022 (1992-06-01), Soane et al.
patent: 5498392 (1996-03-01), Wilding et al.
patent: 5571410 (1996-11-01), Swedberg et al.
patent: 5580523 (1996-12-01), Bard
patent: 5585069 (1996-12-01), Zanzucchi et al.
patent: 5593838 (1997-01-01), Zanzucchi et al.
patent: 5603351 (1997-02-01), Cherukuri et al.
patent: 5635358 (1997-06-01), Wilding et al.
patent: 5637469 (1997-06-01), Wilding et al.
patent: 5750015 (1998-05-01), Soane et al.
patent: 5762873 (1998-06-01), Fanning et al.
patent: 5779868 (1998-07-01), Parce et al.
patent: 5800690 (1998-09-01), Chow et al.
patent: 5972187 (1999-10-01), Parce et al.
patent: 6267859 (2001-07-01), Kambara
patent: 6309890 (2001-10-01), Tegeler et al.
patent: WO9604547 (1996-02-01), None
patent: WO9702357 (1997-01-01), None
Dasgupta, P.K. et al., “Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis,”Anal. Chem. 66:1792-1798 (1994).
Jacobson, S.C. et al., “Fused Quartz Substrates for Microchip Electrophoresis,”Anal. Chem. 67:2059-2063 (1995).
Manz, A. et al., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,”J. Micromech. Microeng. 4:257-265 (1994).
Ramsey, J.M. et al., “Microfabricated chemical measurement systems, ”Nature Med. 1:1093-1096 (1995) Oct.
Seiler, K. et al., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency,”Anal. Chem. 65:1481-1488 (1993).
Seiler, K. et al., “Electroosmotic Pumping and Valveless Control of Fluid Flow Within a Manifold of Capillaries on a Glass Chip,”Anal. Chem. 66:3485-3491 (1994) Oct.
Woolley, A.T. et al., “High-Spped DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips,”Anal. Chem. 69:2181-2186 (1997) June.
Caliper Technologies Corp.
Filler Andrew L.
Murphy Matthew B.
Noguerola Alex
Warden Jill
LandOfFree
Multiplexed microfluidic devices, systems, and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multiplexed microfluidic devices, systems, and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiplexed microfluidic devices, systems, and methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2997633