Multiple station vacuum deposition apparatus for texturing a...

Chemistry: electrical and wave energy – Apparatus – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S719000

Reexamination Certificate

active

06200441

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to processing of a substrate in making a disk to be used in a fixed-disk disk drive. More particularly, it relates to using a vacuum deposition machine to laser texture an inner annular region or landing zone of a substrate.
2. Description of the Prior Art and Related Information
The overall cost and performance of a contemporary fixed-disk disk drive, such as a magnetic hard disk drive, depend significantly on the cost and performance of each magnetic disk within the drive.
The cost of manufacturing magnetic disks depends in part on the cost and efficiency of operation of various machines used to carry out numerous processes involved in manufacturing the disks. These processes include texturing processes. Typically, one machine is used for “full-surface” texturing and another machine is used for landing zone texturing. An example of a machine for landing zone texturing is a standalone laser texturing machine which includes a rotating and translating spindle that rotates a substrate while a stationary pulsed laser beam is directed at the rotating substrate causing bumps to be formed in the landing zone of the substrate.
The standalone machine typically laser textures one substrate at a time and its throughput may be severely limited by factors such as the substrate handling time. Also, the cost of the laser texturing machine may constitute a significant portion of the overall cost of manufacturing the disks.
The manufacturing of magnetic disks also typically involves the use of a stationary vacuum deposition machine. (In this art, a stationary vacuum deposition machine is commonly called a stationary sputtering machine, and the two different terms are used interchangeably herein.). An alternate machine is an in-line sputtering machine. Either type of machine is used to, among other things, deposit a succession of thin film layers on a substrate. The thin film layers may include an underlayer, a magnetic layer, and a carbon overcoat layer. A typical stationary sputtering machine includes a series of stations. The series of stations includes a load station, a plurality of sputtering stations, a cooling station, a heating station, and an unload station. Each station has a per-stage processing time of typically approximately 5 to 7 seconds. The sputtering stations are used to sputter the succession of thin film layers on a substrate; typically, both sides of the substrate are sputtered with the succession of thin film layers. Among the series of stations, a plurality of spare stations are also usually included. The cost of a sputtering machine adds a significant portion to the overall cost of manufacturing the disks.
The performance of a fixed-disk disk drive depends in part on structures that affect the startup of operation of the drive. In a typical disk drive, a slider lands in the landing zone when the disk drive is powered down. Texturing of the landing zone reduces the effective contact area between the slider and the surface of the landing zone thereby reducing the static friction forces (“stiction”) that must be overcome to separate the slider from the surface of the landing zone when the disk drive is powered on. Such a reduction of static friction forces improves the performance of the disk drive.
A need exists in the art to reduce the costs of manufacturing the disks.
SUMMARY OF THE INVENTION
This invention can be regarded as a method for using a stationary vacuum deposition machine to process a substrate to make a magnetic hard disk. The machine has a controllable transport means and a series of stations. The series of stations includes stations to which the controllable transport means sequentially moves the substrate and at each of which a thin film layer is deposited onto the substrate. The method includes the steps of loading the substrate into the machine and controlling the transport means to cause the substrate to be moved into, and then be temporarily held stationary in, a predetermined one of the series of stations. The method also includes the step of directing a scanning beam at the substrate while it is held stationary in the predetermined station to produce a textured pattern.
This invention can also be regarded as a method for using a stationary vacuum deposition machine to process substrates to make magnetic hard disks in a pipeline process. The machine has a controllable transport means, a series of stations through which the controllable transport means sequentially moves each of the substrates, and a controllable plurality of station vacuum deposition means. The method includes the steps of sequentially loading the substrates into the machine and controlling the transport means to operate in a cycle with each cycle including a transport phase and a stationary phase such that the transport means causes all the substrates that are in the machine to be moved during the transport phase, and be temporarily held stationary during the stationary phase, such that during each stationary phase a predetermined one of the stations is occupied by one of the substrates while each of a plurality of others of the stations is occupied by a respective one of a plurality of others of the substrates. The method also includes the steps of controlling the plurality of station vacuum deposition means to operate during each stationary phase such that each station vacuum deposition means causes a thin film to be deposited on a respective one of the substrates, and also during each stationary phase, directing a scanning beam at the substrate occupying the predetermined station while the substrate is held stationary to produce a textured pattern.
This invention can also be regarded as a stationary vacuum deposition machine for use in a method for processing substrates to make magnetic hard disks. The machine includes a series of stations and a transport means. The series of stations includes an entrance station for receiving substrates into the machine and a predetermined station. The transport means operates in a cycle with each cycle including a transport phase and a stationary phase. The transport means causes all the substrates that are in the machine to be moved during the transport phase, and be temporarily held stationary during the stationary phase, such that during each stationary phase a predetermined one of the stations is occupied by one of the substrates while each of a plurality of others of the stations is occupied by a respective one of a plurality of others of the substrates. The machine further includes a plurality of station vacuum deposition means and a scanning beam generating means. Each station vacuum deposition means operates during each stationary phase such that each station vacuum deposition means causes a thin film to be deposited on a respective one of the substrates. The scanning beam generating means directs a scanning beam at the substrate occupying the predetermined station while the substrate is held stationary to produce a textured pattern.


REFERENCES:
patent: 3968018 (1976-07-01), Lane et al.
patent: 4915564 (1990-04-01), Arita et al.
patent: 4954852 (1990-09-01), Lemnios
patent: 5062021 (1991-10-01), Ranjan et al.
patent: 5205919 (1993-04-01), Zejda
patent: 5520981 (1996-05-01), Yang et al.
patent: 5586040 (1996-12-01), Baumgart et al.
patent: 5599590 (1997-02-01), Hayashi et al.
patent: 5910235 (1999-06-01), Gornicki et al.
patent: 5928759 (1999-07-01), Arita et al.
“Laser Texturing for Low-Flying-Height Media” by R. Ranjan, et al., J. Appl. Phys. 69(8), Apr. 15, 1991, pp. 5745-5747.
“A New Laser Texturing Technique for High Performance Magnetic Disk Drives” P. Baumgart, et al., IEEE Transactionas on Magnetics, vol. 31, No. 6, Nov. 1995, pp. 2946-2951.
“Safe Landings: Laser Texturing of High-Density Magnetic Disks” by Peter Baumgart, et al., Data Storage, Mar. 1996, pp. 21-24.
“Design of Laser Zone Texture for Low Glide Media” by D. Kuo, et al., Abstracts of 1996 Intermag Conference, Seattle, WA.
“Laser Zone Texture on Alternative Substrate Disks” by E. Teng, et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple station vacuum deposition apparatus for texturing a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple station vacuum deposition apparatus for texturing a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple station vacuum deposition apparatus for texturing a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2444795

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.